Electronic Structure of Non-Stoichiometric Transition Metal Hydrides

  • A. Bansil
  • R. Prasad
  • L. Schwarz
Part of the NATO Conference Series book series (NATOCS, volume 6)


We review the theoretical work concerning the effects of non-stoichiometry on the electronic spectra of transition metal hydrides. The treatment of these effects generally falls outside the scope of the conventional Bloch band theory. However, the recently developed techniques of band theory of random alloys can be applied to this problems by modelling the metal-hydrogen system as an “alloy” of hydrogen atoms and vacancies. This approach involves the use of the average t-matrix (ATA) and coherent potential (CPA) approximations within the Korringa-Kohn-Rostoker framework. We discuss the premises underlying such a scheme and the progress that has been possible on this basis in understanding the metal-hydrogen system.


Fermi Surface Metal Hydride Complex Band Band Theory Hole Pocket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.C. Switendick, Topics in Applied Physics, Vol. 28: Hydrogen in Metals I: Basic. Properties, G. Alefeld and J. Völkl, Springer Verlag, Berlin 1978, p. 101.CrossRefGoogle Scholar
  2. 2.
    A.C. Switendick, Zeits. Physik. Chem. Neue Folge, Bd. 117, S89 (1979).CrossRefGoogle Scholar
  3. 3.
    D.A. Papaconstantopoulos, Proceedings of the NATO Advanced Study Institute on Metal Hydrides. (Plenum, 1981 ).Google Scholar
  4. 4.
    For recent theoretical discussions of the muffin-tin alloys see Refs. 5 to 9 below. A review up to 1975 is found in Section IX of H. Ehrenreich and L. Schwartz in Solid State Physics, edited by H. Ehrenreich, F. Seitz and D. Turnbull ( Academic, New York, 1976 ), Vol. 31.Google Scholar
  5. 5.
    A. Bansil, Phys. Rev. Letters 41, 1670 (1978); A. Bansil, Phys. Rev. B20, 4025 (1979); ibid, B20, 4035 (1979).Google Scholar
  6. 6.
    A. Bansil, R.S. Rao, P.E. Mijnarends and L. Schwartz, Phys. Rev. B23, 3608 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    J.S. Faulkner and G.M. Stocks, Phys. Rev. B21, 3222 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    B.E.A. Gordon, W.E. Temmerman and B.L. Gyorffy, J. Phys. F. 11, 821 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    See contributions by L. Schwartz, by A. Bansil and by R. Prasad, R.S. Rao and A. Bansil in the Proceeding of NATO Advanced Study Institute on Excitations in Disordered Systems, Michigan State University, M.F. Thorpe, ed. (Plenum, 1982 ).Google Scholar
  10. 10.
    C.D. Gelatt, Jr., H. Ehrenreich and J.A. Weiss, Phys. Rev. B17, 1940 (1978).CrossRefGoogle Scholar
  11. 11.
    A. Bansil, S. Bessendorf and L. Schwartz, Inst. Phys. Conf. Ser. 39, 493 (1978).Google Scholar
  12. 12.
    A. Bansil, R. Prasad, S. Bessendorf, L. Schwartz, W.J. Venema, B. Feenstra, F. Blom and R. Griessen, Solid State Commun. 32, 1115 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    L. Huisman and J.A. Weiss, Solid State Commun., 16, 983 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Weaver, D.J. Peterman and D.T. Peterson, Proceedings of this conference.Google Scholar
  15. 15.
    M. Gupta, Proceedings of this conference.Google Scholar
  16. 16.
    M.A. Khan, J.C. Parlebas and C. Demangeat, Proceedings of this conference.Google Scholar
  17. 17.
    A.C. Switendick, J. Less-Common Metals 74, 199 (1980).CrossRefGoogle Scholar
  18. 18.
    J.S. Faulkner, Phys. Rev. B13, 2391 (1976).ADSCrossRefGoogle Scholar
  19. 19.
    D.A. Papaconstantopoulos, B.M. Klein, J.S. Faulkner, and L.L. Boyer, Phys. Rev. B18, 2784 (1978).ADSCrossRefGoogle Scholar
  20. 20.
    P. Jena and K.S. Singwi, Phys. Rev. B17, 3518 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    P. Jena, F.Y. Fradin and D.E. Ellis, Phys. Rev. B20, 3543 (1979).Google Scholar
  22. 22.
    M.I. Darby, G.R. Evans and M.N. Read, J. Phys. F 11, 1023 (1981).ADSCrossRefGoogle Scholar
  23. 23.
    H. Adachi, S. Imoto, J. Phys. Soc. Japan, 46, 1194 (1979).CrossRefGoogle Scholar
  24. 24.
    H. Adachi, S. Imoto, T. Tanabe and M. Tsukada, J. Phys. Soc. Japan 44, 1039 (1978).ADSCrossRefGoogle Scholar
  25. 25.
    Here, “complex bands” refers to bands prossessing an imaginary part. This terminology has often been used in the literature in conncection with energy bands in perfect crystals with complicated structures.Google Scholar
  26. 26.
    For a recent review, see P.E. Mljnarends in Positrons in Solids, P. Hautojärvi ( Springer Verlag, Berlin, 1979 ), p. 25.Google Scholar
  27. 27.
    P.E. Mijnarends and A. Bansil, Phys. Rev. B19, 2919 (1979).CrossRefGoogle Scholar
  28. 28.
    B.L. Gyorffy and G.M. Stocks, J. Phys. F10, L321 (1980).Google Scholar
  29. 29.
    M. Pease, H. Asonen, R.S. Rao, R. Prasad and A. Bansil, Phys. Rev. Letters 47, 1223 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    M. Pessa, H. Asonen, M. Lindroos, A.J. Pindor, B.L. Gyorffy and W.M. Temmerman, J. Phys. F11, L33 (1981).ADSCrossRefGoogle Scholar
  31. 31.
    J. Staunton, B.L. Gyorffy and P. Weinberger, J. Phys. F (1981).Google Scholar
  32. 32.
    S. Kaprzyk and A. Bansil, Phys. Rev. B (1982).Google Scholar
  33. 33.
    L. Schwartz, Phys. Rev. B23, 3608 (1981).CrossRefGoogle Scholar
  34. 34.
    G.M. Stocks and W. Butler, Phys. Rev. Letters 48, 55 (1982).ADSCrossRefGoogle Scholar
  35. 35.
    L.J. Gray and T. Kaplan, Phys. Rev. B24, 1872 (1981).ADSGoogle Scholar
  36. 36.
    R. Mills and P. Ratnavararaska, Phys. Rev. B18, 5291 (1978); H.W. Diehl and P.L. Leath, Phys. Rev. B19, 587 (1979); T. Kaplan, P.L. Leath, L.J. Gray, and H.W. Diehl, Phys. Rev. B21, 4230 (1980).Google Scholar
  37. 37.
    R. Griessen and L.M. Huisman, Proceedings of this conference.Google Scholar
  38. 38.
    A. Bansil, H. Ehrenreich, L. Schwartz and R.E. Watson, Phys. Rev. B9, 445 (1974).ADSCrossRefGoogle Scholar
  39. 39.
    R. Prasad, S.C. Papadopoulos and A. Bansil, Phys. Rev. B23, 2607 (1981).ADSCrossRefGoogle Scholar
  40. 40.
    R. Prasad and A. Bansil, Phys. Rev. Letters 48, 113 (1982).ADSCrossRefGoogle Scholar
  41. 41.
    The exact density of states in the disordered alloy will, of course, have contributions from impurity levels associated with clusters of more than one atom. However, within the framework of ATA and CPA only the properties of the single A or B impurities occur in a transparent manner.Google Scholar
  42. 42.
    In fact, different versions of the muffin-tin ATA for densities of states and other properties can be obtained, depending upon how the impurity contributions, given by Eq. (2.2), are treated. See Ref. 5 for a discussion of this point.Google Scholar
  43. 43.
    For structural information see, for example, G.G. Libowitz, The Solid State Chemistry of Binary Metal Hydrides, (Benjamin, New York, 1965 ).Google Scholar
  44. 44.
    Of course, there are many delicate questions concerning the way H enters metals, the formation of hydrogen density waves. [See review by D.G. Westlake and by T. Schober, in Proceedings of this Conference]. However, the average electronic spectrum will likely be insenstive to some of these fine structural details.Google Scholar
  45. 45.
    A.C. Switendick, Ber. Bunsenges. Physik. Chem. 76, 535 (1972).Google Scholar
  46. 46.
    A hydrogen induced structure in PdH was seen in the early photoemission data of D.E. Eastman,xJ.K. Cashion and A.C. Switendick [Phys. Rev. Letters 27, 35 (1971)]. More recent XPS/UPS studies have been presented by L. Schlapbach and J.P. Burger [Proceedings of this conference].Google Scholar
  47. 47.
    A. similar conclusion has also been reached by Switendick (to be published) by supercell calculations on Pd 2H and by Klein and Pickett (Ref. 48), who consider a single g impurity in the Pd lattice.Google Scholar
  48. 48.
    B.M. Klein and W.E. Pickett, Proceedings of this conference.Google Scholar
  49. 49.
    W.J. Venema, R. Feenstra, F. Blom and R. Griessen, Zeits. Physik. Chem. Neue Folge, Bd. 116, S125 (1979).Google Scholar
  50. 50.
    W.J. Venema, Ph.D. Thesis (Free University of Amsterdam, 1980 ).Google Scholar
  51. 51.
    R. Griessen, W.J. Venema, J.K. Jacobs, F.D. Manchester and Y. de Ribaupierre, J. Phys. F7, L133 (1977).ADSCrossRefGoogle Scholar
  52. 52.
    All calculations in Table 1 are based on an unscreened (1/r) H Potential, which is cut-off at the H sphere radius. However, we carried out a number of additional computations, which show that our conclusions are insensitive to reasonable variations in the H potential.Google Scholar
  53. 53.
    J.D. Eshelby, J. Appl. Phys. 25, 255 (1954).ADSMATHCrossRefGoogle Scholar
  54. 54.
    Dingle temperatures corresponding to column c were also inferred in Ref. 10.Google Scholar
  55. 55.
    ak/k values for other directions in the orbit are not presented; the results listed for the (100) direction are typical in this regard.Google Scholar
  56. 56.
    See Ref. 39 for a detailed discussion of this point.Google Scholar
  57. 57.
    W.J. Venema, R. Griessen, R.S. Sorbello, H.L.M. Bakker and P.E. Mijnarends, Inst. Phys. Conf. Ser. 55, 579 (1981). See, also, Ref. 37.Google Scholar
  58. 58.
    R. Griessen (private communication).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • A. Bansil
    • 1
  • R. Prasad
    • 1
  • L. Schwarz
    • 2
  1. 1.Physics DepartmentNortheastern UniversityBostonUSA
  2. 2.Physics DepartmentBrandeis UniversityWalthamUSA

Personalised recommendations