Electronic Structure of Metal Hydrides and Deuterides from de Haas-van Alphen Measurements

  • R. Griessen
  • L. M. Huisman
Part of the NATO Conference Series book series (NATOCS, volume 6)


The electronic structure of metal-hydrogen systems has traditionally been investigated by means of low temperature specific heat and magnetic susceptibility measurements. It was for example on the basis of susceptibility measurements that Mott proposed the proton model1 for the palladium-hydrogen system. According to this model the extra electron brought in by dissolving a hydrogen atom in palladium fills empty states of the host metal at the Fermi energy.


Fermi Surface Isotope Effect Metal Hydride Electron Sheet Octahedral Interstitial Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.F. Mott and H. Jones, “The Theory of the Properties of Metals and Alloys”, Clarendon, Oxford 1936Google Scholar
  2. 2.
    A.C. Switendick, Ber. Bunsenges. Physik. Chem. 76 (1972) 535Google Scholar
  3. 3.
    D.E. Eastman, J.K. Cashion and A.C. Switendick, Phys. Rev. Lett. 27 (1971) 35ADSCrossRefGoogle Scholar
  4. 4.
    F. Antonangeli, A. Balzarotti, A. Bianconi, E. Buranttini, P. Perfetti and N. Nistico, Phys. Lett. 55A (1975) 309CrossRefGoogle Scholar
  5. 5.
    L. Schlapbach and J.P. Burger, J. Physique, to be publishedGoogle Scholar
  6. 6.
    D.E. Eastman, Solid State Commun. 10 (1972) 933ADSCrossRefGoogle Scholar
  7. 7.
    Y. Fukai, S. Kazama, K. Tanaka and M. Matsumoto, Solid State Commun. 19 (1976) 507ADSCrossRefGoogle Scholar
  8. 8.
    E. Gilberg, Phys. Stat. Sol. (b) 69 (1975) 477ADSCrossRefGoogle Scholar
  9. 9.
    E. Wicke and J. Blaurock, Ber. Bunsenges. Phys. Chem. 85 (1981) 1091CrossRefGoogle Scholar
  10. 10.
    J.J. Vuillemin, Phys. Rev. 144 (1966) 396ADSCrossRefGoogle Scholar
  11. 11.
    F.M. Mueller, A.J. Freeman, J.0. Dimmock and A.M. Furdyna, Phys. Rev. B1 (1970) 4617ADSCrossRefGoogle Scholar
  12. 12.
    O.K. Andersen, Phys. Rev. B2 (1970) 883ADSGoogle Scholar
  13. 13.
    A.C. Switendick in Topics in Applied Physics 28 edited by G. Alefeld and J. Völkl, ( Springer Verlag 1978 ) p. 101Google Scholar
  14. 14.
    A.C. Switendick, Z. Phys. Chem. NFII7 (1979) 447Google Scholar
  15. 15.
    C.D. Gelatt, H. Ehrenreich and J.A. Weiss, Phys. Rev. B17 (1978) 1940ADSGoogle Scholar
  16. 16.
    A. Bansil, R. Prasad, S. Bessendorf, L. Schwartz, W.J. Venema, R. Feenstra, F. Blom and R. Griessen, Solid State Commun. 32 (1979) 1115ADSCrossRefGoogle Scholar
  17. 17.
    J. Zbasnik and M. Mahnig, Z. Physik B23 (1976) 15ADSGoogle Scholar
  18. 18.
    H. Ehrenreich and. L. Schwartz, Solid State Phys. 31 (Academic Press, New York 1976, edited by H. Ehrenreich, F. Seitz and D. Turnbull ) p. 149Google Scholar
  19. 19.
    H.C. Jamieson and F.D. Manchester, J. Phys. F:Metal Phys. 2 (1972) 323ADSCrossRefGoogle Scholar
  20. 20.
    U. Mizutani, T.B. Massalski and J. Bevk, J. Phys. F:Metal Phys. 6 (1976) 1ADSCrossRefGoogle Scholar
  21. 21.
    As Shown by W.J. Venema (PhD-Thesis, Vrije Universiteit, Amsterdam 1980) homogeneous a-phase PdHX alloys can only be obtained by cooling samples from room temperature to 4.2K at a rate faster than 30K/min. For specific heat measurements the cooling rates are IK/min (see ref. 20)Google Scholar
  22. 22.
    A.V. Gold in Solid State Physics I: “Electrons in Metals”, edited by J.F. Cochran and R.R. Haering, Gordon and Breach, New York 1968Google Scholar
  23. 23.
    I.M. Lifshitz and A.M. Kosevich, Zh. Eksperim. i Teor. Fiz. 29 (1955) 730Google Scholar
  24. I.M. Lifshitz and A.M. Kosevich, Sov. Phys. JETP 2 (1956) 636Google Scholar
  25. 24.
    R.W. Stark and L.R. Windmiller, Cryogenics 8 (1968) 272ADSCrossRefGoogle Scholar
  26. 25.
    R. Griessen, M.J.G. Lee and D.J. Stanley, Phys. Rev. B16 (1977) 4385ADSCrossRefGoogle Scholar
  27. 26.
    W. Wampler and B. Lengeler, Phys. Rev. B15 (1977) 4614ADSCrossRefGoogle Scholar
  28. 27.
    L. Huisman and J.A. Weiss, Solid State Commun. 16 (1975) 983ADSCrossRefGoogle Scholar
  29. 28.
    M. Springford in “Electrons at the Fermi Surface” edited by M. Springford (Cambridge University Press, 1980 ) p. 362Google Scholar
  30. 29.
    H. Teichler, Hyperfine Interactions 6 (1979) 251ADSCrossRefGoogle Scholar
  31. 30.
    M. Gupta and A.J. Freeman, Phys. Rev. B17 (1978) 3029ADSCrossRefGoogle Scholar
  32. 31.
    J.S. Faulkner, Phys. Rev. B13 (1976) 2391ADSGoogle Scholar
  33. 32.
    D.A. Papaconstantopoulos, B.M. Klein, E.N. Economou and L.L. Boyer, Phys. Rev. B17 (1978) 141ADSGoogle Scholar
  34. 33.
    T. Skoskiewicz, Ber. Bunsenges. Physik. Chem. 76 (1972) 847CrossRefGoogle Scholar
  35. 34.
    B. Stritzker and W. Buckel, Z. Physik. 257 (1972) 1ADSCrossRefGoogle Scholar
  36. 35.
    B.N. Ganguly, Z. Physik 265 (1973) 433ADSCrossRefGoogle Scholar
  37. 36.
    W.L. McMillan, Phys. Rev. 167 (1968) 331ADSCrossRefGoogle Scholar
  38. 37.
    J.M. Rowe, J.J. Rush, H.G. Smith, M. Mostoller and H.E. Flotow, Phys. Rev. Lett. 33 (1974) 1297ADSCrossRefGoogle Scholar
  39. 38.
    A.N. Rahman, K. Skold, C. Pelizzari and S.K. Sinha, Phys. Rev. B14 (1976) 3630ADSCrossRefGoogle Scholar
  40. 39.
    J.P. Burger and D.S. MacLachlan, J. Physige 37 (1976) 1227CrossRefGoogle Scholar
  41. 40.
    R. Abbenseth and H. Wipf, J. Phys. F:Metal Phys. 10 (1980) 353ADSCrossRefGoogle Scholar
  42. 41.
    B.M. Geerken, R. Griessen and L.M. Huisman, to be publishedGoogle Scholar
  43. 42.
    A. Eichler, W. Wühl and B. Stritzker, Solid State Commun. 17 (1975) 213ADSCrossRefGoogle Scholar
  44. 43.
    R. Sherman, H.K. Birnbaum, J.A. Holy and M.V. Klein, Phys. Lett. 62A (1977) 353CrossRefGoogle Scholar
  45. 44.
    V.B. Ginodman and L.N. Zherikhina, Sov. J. Low Temp. Phys. 6 (1980) 278Google Scholar
  46. 45.
    R.J. Miller and C.B. Satterthwaite, Phys. Rev. Lett. 34 (1955)144ADSCrossRefGoogle Scholar
  47. 46.
    A.I. Morozov, Sov. Phys. Solid State 20 (1978) 1918Google Scholar
  48. 47.
    W.J. Venema, PhD-Thesis, Vrije Universiteit, Amsterdam 1980Google Scholar
  49. 48.
    H.L.M. Bakker, R. Griessen, L.M. Huisman and W.J. Venema, to be publishedGoogle Scholar
  50. 49.
    J. Friedel, Adv. in Phys. 3 (1954) 446ADSCrossRefGoogle Scholar
  51. 50.
    E.A. Stern, Phys. Rev. B5 (1972) 366ADSCrossRefGoogle Scholar
  52. 51.
    H. Skriver, W.J. Venema, E.Walker and R. Griessen, J. Phys. F: Metal Phys. 8 (1978) 2313ADSCrossRefGoogle Scholar
  53. 52.
    E. Wicke, private communicationGoogle Scholar
  54. 53.
    Z.D. Popovicz, M.J. Stott, J.P. Carbotte and G.R. Piercy, Phys. Rev. B13 (1976) 590ADSCrossRefGoogle Scholar
  55. 54.
    P. Jena, K.S. Singwi and R.M. Nieminen, Phys. Rev. B17 (1978) 579Google Scholar
  56. 55.
    W.J. Venema, R. Griessen, R.S. Sorbello, H.L.M. Bakker and P.E. Mijnarends, Inst. Phys. Conf. Ser. 55 (1981) 579Google Scholar
  57. 56.
    J.S. Langer and S.H. Vosko, J. Phys. Chem. Solids 12 (1959) 196ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. Griessen
    • 1
  • L. M. Huisman
    • 1
  1. 1.Natuurkundig LaboratoriumVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations