Advertisement

Electronic Structure of Metal Hydrides: A Review of Experimental and Theoretical Progress

  • J. H. Weaver
  • D. J. Peterman
  • D. T. Peterson
Part of the NATO Conference Series book series (NATOCS, volume 6)

Abstract

In this paper we discuss metal-hydrogen electronic interactions in bulk hydrides by reviewing recent theoretical and experimental results for typical monohydrides (VH, NbH, and TaH), dihydrides (LaH2, PrH2, and NdH2), and trihydrides (LaH3).

Keywords

Metal Hydride Titanium Hydride Photoemission Spectrum Zirconium Hydride Photoemission Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Friedel, Philos. Mag. 43, 153 (1952).MATHGoogle Scholar
  2. 2.
    A. Switendick, Electronic Band Structures of Metal Hydrides, Solid State Commun. 8, 1463 (1970)ADSCrossRefGoogle Scholar
  3. A. C. Switendick, Metal Hydrides - Structure and Band Structure, Int. J. Quantum Chem. 5, 459 (1971).CrossRefGoogle Scholar
  4. 3.
    J. H. Weaver, J. A. Knapp, D. E. Eastman, D. T. Peterson, and C. B. Satterthwaite, Electronic Structure of the Thorium Hydrides ThH2 and Th4H15, Phys, Rev. Lett. 39, 639 (1977).ADSCrossRefGoogle Scholar
  5. 4.
    A.C. Switendick, Electronic Energy Bands of Metal Hydrides - Pd and Ni Hydrides, Ber. Bunsenges Physik. Chem. 76, 535 (1972).Google Scholar
  6. 5.
    A. C. Switendick, Hydrogen in Metals - A New Theoretical Model, in: “Hydrogen Energy, Part B,” T. N. Veziroglu, ed., Plenum Press (1975) p. 1029.Google Scholar
  7. 6.
    A. C. Switendick, Bandstructure Calculations for Metal Hydrogen Systems, Z. Physik Chemie 117, 89 (1979).CrossRefGoogle Scholar
  8. 7.
    A. C. Switendick, The Change in Electronic Properties on Hydrogen Alloying and Hydride Formation, in: “Topics in Applied Physics, Vol. 28, Hydrogen in Metals I: Basic Properties,” G. Alefeld and J. Volkl, eds., Springer Verlag (1978) p. 101.Google Scholar
  9. 8.
    A. C. Switendick, Influence of the Electronic Structure on the Titanium-Vanadium-Hydrogen Phase Diagram,“ J. Less-Common Metals 49, 283 (1976).CrossRefGoogle Scholar
  10. 9.
    A. C. Switendick, Electronic Structure of Non-Stoichiometric Cubic Hydrides, J. Less-Common Metals 74, 199 (1980).CrossRefGoogle Scholar
  11. 10.
    D. A. Papaconstantopoulos, Electronic Structure of Metal Hydrides, “Proceedings of the NATO Advanced Study Institute on Metal Hydrides,” Plenum Press (1981) and detailed references therein.Google Scholar
  12. 11.
    D. A. Papaconstantopoulos and B.M. Klein, Superconductivity in the Pd-H System, Phys. Rev. Lett. 35, 110 (1975).ADSCrossRefGoogle Scholar
  13. 12.
    D. A. Papaconstantopoulos, B. M. Klein, E. N. Economou, and L. L. Boyer, Band Structure and Superconductivity of PdDx and PdHx, Phys. Rev. B 17, 141 (1978).ADSCrossRefGoogle Scholar
  14. 13.
    D. A. Papaconstantopoulos, B. M. Klein, J. S. Faulkner, and L. L. Boyer, Coherent-Potential-Approximation Calculations for PdHx, Phys. Rev. B 18, 2784 (1978).ADSCrossRefGoogle Scholar
  15. 14.
    J. S. Faulkner, Electronic States of Substoichiometric Compounds and Application to Pd-H, Phys. Rev. B 13, 2391 (1976).ADSCrossRefGoogle Scholar
  16. 15.
    J. Zbasnik and M. Mahnig, Electronic Structure of 13-Phase PdH, Z. Phys. B 23, 15 (1976).ADSCrossRefGoogle Scholar
  17. 16.
    M. Gupta and A. J. Freeman, Electronic Structure and Proton Spin-Lattice Relaxation in PdH, Phys. Rev. B 17, 3029 (1978).ADSCrossRefGoogle Scholar
  18. 17.
    M. Gupta, Electronic Structure of ErH2, Solid State Commun. 27, 1355 (1978).ADSCrossRefGoogle Scholar
  19. 18.
    M. Gupta, Electronically Driven Tetragonal Distortion in TiH2, Solid State Commun. 29, 47 (1979).ADSCrossRefGoogle Scholar
  20. 19.
    M. Gupta and J. P. Burger, Electronic Structure and Electron-Phonon Interaction in Aluminum Hydrides, J. Physique 41, 1009 (1980).CrossRefGoogle Scholar
  21. 20.
    M. Gupta and J. P. Burger, Electronic Structure of Rare-Earth Hydrides: LaH2 and LaH3,“ Phys. Rev. B 22, 6074 (1980)ADSCrossRefGoogle Scholar
  22. M. Gupta and J. P. Burger, Electronic Structure and Its Relationship to Superconductivity in NiH, J. Phys. F 10, 2649 (1980).ADSCrossRefGoogle Scholar
  23. 21.
    M. Gupta and J. P. Burger, Trends in the Electronic-Phonon Coupling Parameter in Some Metallic Hydrides, Phys. Rev. B 24, 7099 (1981).ADSCrossRefGoogle Scholar
  24. 22.
    M. Gupta, Electronic Properties and Electron-Phonon Coupling in Zirconium and Niobium Hydrides, private communication.Google Scholar
  25. 23.
    D. J. Peterman and B. N. Harmon, Electronic Structure of ScH2, Phys. Rev. B 20, 5313 (1979).ADSCrossRefGoogle Scholar
  26. 24.
    D. J. Peterman, B. N. Harmon, D. L. Johnson, and J. Marchiando, Electronic Structure of Trivalent Metal Dihydrides: Theory, Z. Phy. Chem. 116, 47 (1979).CrossRefGoogle Scholar
  27. 25.
    N. I. Kulikov, V. N. Bobzunov, and A. D. Zvonkov, The Electronic Band Structure and Interatomic Bond in Nickel and Titanium Hydrides, Phys. Stat. Sol. B 86, 83 (1978).ADSCrossRefGoogle Scholar
  28. 26.
    N. I. Kulikov and V. V. Tugeshev, An Electronic Band Structure Model for the Metal-Semiconductor Transition in Cerium-Group Hydrides, J. Less-Common Metals 74, 227 (1980).CrossRefGoogle Scholar
  29. 27.
    N. I. Kulikov and A. D. Zvonkov, Band Structure and Metal-toSemiconductor Transition in the Cubic Hydrides of 3B-Subgroup Elements, Z. Physik. Chemie 117, 113 (1979).CrossRefGoogle Scholar
  30. 28.
    A. Fujimori and N. Tsuda, Electronic States in Non-Stoichiometric Rare-Earth Hydrides, J. Phys. C 14, 1427 (1981).ADSCrossRefGoogle Scholar
  31. 29.
    A. Fujimori, F. Minami, and N. Tsuda, Electronic Structure of Cerium Hydrides: Augmented-Plane-Wave-LCAO Energy Bands, Phys. Rev. B 22, 3573 (1980).ADSCrossRefGoogle Scholar
  32. 30.
    A. Fujimori and N. Tsuda, Electron-Phonon Interaction and Composition-Dependent Phonon Anomaly in CeHx, J. Phys. C 14, L69 (1981).ADSCrossRefGoogle Scholar
  33. 31.
    A. Fujimori and N. Tsuda, Electronic Structure of TiH2, Solid State Commun, in press; A. Fujimori and N. Tsuda, Electronic Structure of Nonstoichiometric Titanium Hydrides, private communication.Google Scholar
  34. 32.
    M. Methfessel and J. Kubler, Bond Analysis of Heats of Formation: Application to Some Group VIII and IB Hydrides, J. Phys. F 12, 141 (1982).ADSCrossRefGoogle Scholar
  35. 33.
    C. D. Gelatt, J. A. Weiss, and H. Ehrenreich, Heats of Formation of 3d and 4d Transition Metal Hydrides, Solid State Commun. 17, 663 (1975)ADSCrossRefGoogle Scholar
  36. C. D. Gelatt, H. Ehrenreich, and J. A. Weiss, Transition Metal Hydrides: Electronic Structure and the Heats of Formation, Phys. Rev. B 17, 1940 (1978).ADSCrossRefGoogle Scholar
  37. 34.
    A. Bansil, R. Prasad, S. Bessendorf, L. Schwartz, W. J. Venema, R. Feenstra, F. Blom and R. Griessen, Electronic States and Fermi Surface Properties of a-Phase PdHx, Solid State Commun. 32, 1115 (1979).ADSCrossRefGoogle Scholar
  38. 35.
    A. Bansil, Proceedings of this conference and references therein.Google Scholar
  39. 36.
    M. I. Darby, G. R. Evans, and M. N. Read, Self-Consistent Screening of Hydrogen in Zirconium, J. Phys. F 11, 1023 (1981).ADSCrossRefGoogle Scholar
  40. 37.
    P. G. Rudolf and R. C. Chaney, Electronic Structure of Hydrogen Impurity in Nickel Using the Linear-Combination-of-AtomicOrbitals Method, Phys. Rev. B in press.Google Scholar
  41. 38.
    D. L. Westlake, C. B. Satterthwaite, and J. H. Weaver, Hydrogen in Metals, Physics Today 31, 32 (1978).CrossRefGoogle Scholar
  42. 39.
    J. H. Weaver and D. T. Peterson, The Influence of Interstitial Hydrogen on the Band Structure of Nb and Ta: An Optical Study of NbH0.453 and TaB0.257, Phys. Lett. A 62, 433 (1977).ADSCrossRefGoogle Scholar
  43. 40.
    J. H. Weaver, R. Rosei, and D. T. Peterson, Optical Interband Structure of the Low Energy Plasmon in ScH2, Solid State Commun. 25, 201 (1978).ADSCrossRefGoogle Scholar
  44. 41.
    J. H. Weaver, R. Rosei, and D. T. Peterson, Electronic Structure of Metal Hydrides I: Optical Studies of ScH2, YH2, and LuH2, Phys. Rev. B 19, 4855 (1979).ADSCrossRefGoogle Scholar
  45. 42.
    D. J. Peterman, B. N. Harmon, J. Marchiando, and J. H. Weaver, “Electronic Structure of Metal Hydrides II: Band Theory of ScH2 and YH2, Phys. Rev. B 19, 4867 (1979).ADSCrossRefGoogle Scholar
  46. 43.
    J. H. Weaver, D. T. Peterson, and R. L. Benbow, Electronic Structure of Metal Hydrides III: Photoelectron Studies of ScH2, YH2, and LuH2, Phys. Rev. B 20, 5301 (1979).ADSCrossRefGoogle Scholar
  47. 44.
    J. H. Weaver and D. T. Peterson, Photoelectron Spectroscopy of Metal Dihydrides, Z. Physik. Chemie 116, 501 (1979).Google Scholar
  48. 45.
    D. J. Peterman, D. T. Peterson, and J. H. Weaver, Optical and Photoemission Studies of Lanthanum Hydrides, J. Less-Common Metals 74, 167 (1980).CrossRefGoogle Scholar
  49. 46.
    J. H. Weaver and D. T. Peterson, Electronic Structure of Metal Hydrides, J. Less-Common Metals 74, 207 (1980).CrossRefGoogle Scholar
  50. 47.
    J. H. Weaver, D. J. Peterman, D. T. Peterson, and A. Franciosi, Electronic Structure of Metal Hydrides IV: TIHx, ZrHx, HfHx, and the fcc-fct Lattice Distortion, Phys. Rev. B 23, 1692 (1981).ADSCrossRefGoogle Scholar
  51. 48.
    D. J. Peterman, J. H. Weaver, and D. T. Peterson, Electronic Structure of Metal Hydrides V: X-Dependent Properties of LaHx (1.9 ≤ x ≤ 2.9) and NdHx (2.01 ≤ x ≤ 2.27), Phys. Rev. B 23, 3903 (1981).ADSCrossRefGoogle Scholar
  52. 49.
    D. J. Peterman, D. Misemer, and J. H. Weaver, Electronic Structure of Metal Hydrides VI: Photoemission Studies of VH, NbH, and TaH and Band Calculations of NbH,“ manuscript in preparation.Google Scholar
  53. 50.
    B. W. Veal, D. J. Lam, and D. G. Westlake, X-Ray Photoemission Spectroscopy Study of Zirconium Hydride, Phys. Rev. B 19, 2856 (1979).ADSCrossRefGoogle Scholar
  54. 51.
    D. E. Eastman, J. K. Cashion, and A. C. Switendick, Photoemission Studies of Energy Bands in the Pd-H System, Phys. Rev. Lett. 27, 35 (1971).ADSGoogle Scholar
  55. 52.
    G. A. Frazier and R. Glosser, Hydrogen-Induced Changes in the Electronic Structure of Pd-H Measured by Thermoreflectance, Solid State Commun. 41, 245 (1982).ADSCrossRefGoogle Scholar
  56. 53.
    J. H. Weaver, A. Franciosi, W. E. Wallace, and H. Kevin Smith, Bulk Electronic Structure and Surface Oxidation of LaNi5, Er6Mn23 and Related Systems, J. Appl. Phys. 51, 5847 (1980).ADSCrossRefGoogle Scholar
  57. 54.
    J. H. Weaver, D. J. Peterman, A. Franciosi, T. Takeshita, and K. A. Gschneidner, Electronic Structure and Surface Oxidation of the Haucke Compounds CaNi5, YNi5, LaNi5, and ThNi5, J. Less-Common Metals (1982).Google Scholar
  58. 55.
    W. E. Wallace, J. H. Weaver, D. J. Peterman, and F. Pourarian, Photoemission Studies of LaNi5−xCux Alloys and Relation to Hydride Formation, J. Phys. Chem. (1982).Google Scholar
  59. 56.
    T. Schober and H. Wenzl, The Systems NbH(D), TaH(D), VH(D): Structures, Phase Diagrams, Morphologies, Methods of Preparation, in “Topics in Applied Physics, Vol. 29, Hydrogen in Metals,” G. Alefeld and J. Volkl, eds., Springer Verlag (1978) chapter 2 and references therein.Google Scholar
  60. 57.
    For Nb see, for example, R. J. Smith, Photoemission Studies of Hydrogen Chemisorption on Nb, Phys. Rev. B 21, 3131 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. H. Weaver
    • 1
  • D. J. Peterman
    • 1
  • D. T. Peterson
    • 2
  1. 1.Synchroton Radiation CenterUniversity of Wisconsin-MadisonStoughtonUSA
  2. 2.Ames Laboratory-USDOE and Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations