Properties of Vanadium-Alloy Dihydrides

  • H. G. Severin
  • E. Wicke
Part of the NATO Conference Series book series (NATOCS, volume 6)


Dihydrides of binary V-alloys with Ti and Cr have been investigated by X-ray diffraction, inelastic neutron scattering, measurements of the magnetic susceptibility and low temperature calorimetry. A strong H induced bulk segregation in V/Ti-alloys required special care in sample preparation. All dihydrides exhibit f.c.c. structure, the lattice constant decreases with decreasing Ti content, but remains almost unaffected by the Cr concentration. Inelastic neutron scattering shows only little dependence of the vibrational band modes on the alloy composition. Because the frequency range of the band modes and the local vibrations of H in the tetrahedra are widely separated, no contribution of the optical modes to the electron-phonon coupling and thus no superconductivity is possible. The local H frequencies (mean peak energies) of all the alloy dihydrides are lower than those of VH2. The neutron scattering spectra of the V-alloy dihydrides show a structure in the peak of the optical modes (splitting). The steep rise of the dihydride electronic heat capacity as well as of the susceptibility is discussed in terms of band-structure calculations and reduced screening charge at the H site.


Band Mode Inelastic Neutron Scattering Vibrational Amplitude Electronic Heat Capacity Host Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1/.
    E. Wicke, H. Brodowsky; Hydrogen in Metals II, eds.: G. Alefeld, J. Völkl, Springer Verlag, Berlin 1978Google Scholar
  2. 2/.
    D. Ohlendorf, H. G. Severin, E. Wicke; Z. Physik. Chem. NF in pressGoogle Scholar
  3. D. Ohlendorf, H. G. Severin, E. Wicke; Thermochimica Acta 49 (1981) 11CrossRefGoogle Scholar
  4. 3/.
    A. J. Maeland; J. Phys. Chem. 68 (1964) 2197CrossRefGoogle Scholar
  5. 4/.
    J. F. Lynch, J. J. Reilly, F. Millot; J. Phys. Chem. Sol. 39 (1978) 883ADSCrossRefGoogle Scholar
  6. 5/.
    H. Nagel, R. S. Perkins; Z. Metallkde 66 (1975) 362Google Scholar
  7. 6/.
    F. Ducastelle, R. Caudron, P. Costa; J. Phys. (Paris) 31 (1970) 57CrossRefGoogle Scholar
  8. 7/.
    D. Ohlendorf, E. Wicke; J. Phys. Chem. Solids 40 (1979) 721ADSCrossRefGoogle Scholar
  9. 8/.
    H. G. Severin, K. Frölich, E. Wicke; to be publishedGoogle Scholar
  10. 9/.
    H. G. Severin, P. Schweiß; unpublishedGoogle Scholar
  11. 10/.
    J. J. Rush, H. E. Flotow; J. Chem. Phys. 48 (1968) 3795ADSCrossRefGoogle Scholar
  12. 11/.
    B. N. Ganguly; Z. Phys. 265 (1973) 433ADSCrossRefGoogle Scholar
  13. 12/.
    G. F. Syrykh, M. G. Zemlyanov, N. A. Chernoplekov, B. I. Saveliev; Zh. Eksp. Teor. Fiz. 81 (1981) 308Google Scholar
  14. 13/.
    H. G. Severin, E. Wicke, S. Wilson, D. K. Ross; to be publishedGoogle Scholar
  15. 14/.
    D. K. Ross, P. F. Martin, W. A. Oates, R. Khoda Bakhsh; Z. Phys. Chem. NF 114 (1979) 341CrossRefGoogle Scholar
  16. 15/.
    P. C. P. Bouten, A. R. Miedema; J. Less-Common Met. 71 (1980) 147CrossRefGoogle Scholar
  17. 16/.
    A. C. Switendick; Z. Phys. Chem. NF 114 (1979) 221CrossRefGoogle Scholar
  18. 17/.
    A. C. Switendick; J. Less-Common Met. 49 (1976) 283CrossRefGoogle Scholar
  19. 18/.
    M. Gupta; Solid State Commun. 29 (1979) 47ADSCrossRefGoogle Scholar
  20. 19/.
    J. H. Weaver, D. J. Peterman, D. T. Peterson, A. Franciosi; Phys. Rev. B, 23 (1981) 1692ADSCrossRefGoogle Scholar
  21. 20/.
    R. H. Wiswall, J. J. Reilly; Inorg. Chem. 2 (1972) 1691CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. G. Severin
    • 1
  • E. Wicke
    • 1
  1. 1.Institut für Physikalische ChemieMünsterGermany

Personalised recommendations