A Study of Hydrogen Site Occupation in the Yttrium-Hydrogen Solid Solution Phase Using Inelastic Neutron Scattering

  • J. E. Bonnet
  • S. K. P. Wilson
  • D. K. Ross
Part of the NATO Conference Series book series (NATOCS, volume 6)


The solid solution phase of YHx systems has a hcp structure and can exist with H/M ratios up to 24% at temperatures below 500 K. In this phase the hydrogen can occupy either tetrahedral (T) or Octahedral (O) sites. Existing neutron diffraction and NMR measurements however offer conflicting evidence as to the amount of hydrogen occupying each type of site. Neutron energy loss experiments have been successfully applied to the problem of locating hydrogen in solution in Zr and Ti. We therefore made further measurements on samples of YH0 · 1 and YH0 · 2 at 297 K and 104 K using a Be filter spectrometer. In all cases two peaks were observed centred around 137 and 102 meV. By comparison with previous solid solution and hydride phase measurements we attribute the higher energy peak to the T site and the lower peak to the O site.


Solid Solution Phase Inelastic Neutron Scattering Simple Harmonic Oscillator High Energy Peak Incident Neutron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.P. Narang, G.L. Paul, K.N.R. Taylor, J. Less Comm. Metals, 56: 125 (1977).CrossRefGoogle Scholar
  2. 2.
    R. Khoda Bakhsh and D.K. Ross, J. Phys. F. Met. Phys. 12: 15 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    H. Pinto, C. Korn, S. Goren and H. Shaked, Solid State Commun. 32: 397 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    D.L. Anderson, R.G. Barnes, S.O. Nelson and D.R. Torgeson, Phys. Letters 74A: 427 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    D. Khatamian, C. Stassis, B.J. Beaudry, Phys. Rev. B23: 624 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Bonnet, J. Less Common Metals 49: 451 (1976).CrossRefGoogle Scholar
  7. 7.
    R. Danielou, J.N. Daou, E. Ligion and P. Vajda. Phys. Stat. Sol. (a) 67: 453 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    J.E. Bonnet, C. Juckum and A. Lucasson, J. Phys. F., 12: 699 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    D.G. Hunt and D.K. Ross, J. Less Common Metals 49 (1976).Google Scholar
  10. 10.
    D.K. Ross, P.F. Martin, W.A. Oates and R. Khoda Bakhsh Z. Phys. Chem., 114 (1979).Google Scholar
  11. 11.
    Y. Fukai and H. Sugimoto, J. Phys. F. 11: L137 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    J.E. Bonnet and J.N. Daou, J. Phys. Chem. Solids 40: 421 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    R. Khoda Bakhsh, Ph.D. Thesis, University of Birmingham (1981).Google Scholar
  14. 14.
    J.E. Bonnet, D.K. Ross and S.K.P. Wilson, to be published.Google Scholar
  15. 15.
    W. Wagener, P. Vorderwisch and S. Hauteiler. Phys. Stat. Sol. (b) 98: K171 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. E. Bonnet
    • 1
  • S. K. P. Wilson
    • 2
  • D. K. Ross
    • 2
  1. 1.Defauts dans les Métaux, Bâtiment 350Université Paris SudOrsayFrance
  2. 2.Department of PhysicsUniversity of BirminghamBirminghamUK

Personalised recommendations