Skip to main content

A Review of the Statistical Theory of the Phase-Change Behavior of Hydrogen in Metals

  • Chapter
Electronic Structure and Properties of Hydrogen in Metals

Part of the book series: NATO Conference Series ((SYSC,volume 6))

Abstract

Theoretical treatments of the phase-change behavior of hydrogen in metals based on the lattice-gas model of statistical mechanics are reviewed. Early model calculations assumed that hydrogen in metals could be treated as a lattice-gas model in which the hydrogen-hydrogen interactions were either attractive (as in the Lacher model) or repulsive (as in the blocking models). Models based on attractive interactions predicted phase separations between the disordered phases α and α’ but did not predict the correct saturation behavior while models based on repulsive interactions predicted the correct saturation behavior but could not predict phase transitions. In the mid 1970’s work by Hall and Stell showed that both attractions and repulsions between hydrogen atoms were necessary to obtain the ordered ß phase as well as the phases α and α’. Work by Horner and Wagner, showed that the elastically-based hydrogen-metal interaction is mathematically equivalent to an effective hydrogen-hydrogen interaction and that this effective interaction can be calculated in terms of experimentally measurable quantities. Recently, Futran, Coats, Hall and Welch have developed a model for hydrogen in niobium based on the Horner-Wagner work which predicts the α, α’ and β phases. The model has been extended to apply to the case where hydrogen is absorbed in niobium-vanadium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Alefeld and J. Volkl, Eds., “Hydrogen in Metals”, Springer-Verlag, Berlin (1978).

    Google Scholar 

  2. F. D. Manchester, J. Less-Common Metals 49: 1 (1976).

    Article  Google Scholar 

  3. T. D. Lee and C. N. Yang, Phys. Rev. 87: 410 (1952).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R. A. Fowler and E. A. Guggenheim, “Statistical Thermodynamics”, Cambridge University Press, London (1939).

    MATH  Google Scholar 

  5. J. R. Lacher, Proc. Roy. Soc. (London), Ser. A 161: 525 (1937).

    Article  ADS  Google Scholar 

  6. W. A. Oates and T. B. Flanagan, Prog. Sol. St. Chem. 13: 193 (1981).

    Article  Google Scholar 

  7. R. Speiser and J. W. Spretnak, Trans. Amer. Soc. Met. 47: 493 (1955).

    Google Scholar 

  8. W. A. Oates, J. A. Lambert and P. T. Gallagher, Trans. Met. Soc. AIME 245: 47 (1969).

    Google Scholar 

  9. G. Alefeld, Ber. Bunsenges, Phys. Chem. 76: 746 (1972).

    Google Scholar 

  10. C. Wagner, Acta. Met. 19: 843 (1971).

    Article  Google Scholar 

  11. C. K. Hall and G. Stell, Phys. Rev. B 11: 224 (1975).

    Article  ADS  Google Scholar 

  12. C. K. Hall and M. Futran, J. Less-Common Metals 74: 237 (1980).

    Article  Google Scholar 

  13. H. Wagner and H. Horner, Adv. Phys. 23: 587 (1974).

    Article  ADS  Google Scholar 

  14. H. Horner and H. Wagner, J. Phys. C 7: 3305 (1974).

    Article  ADS  Google Scholar 

  15. R. J. Walter and W. T. Chandler, Trans. AIME 233: 762 (1965).

    Google Scholar 

  16. J. A. Pryde and C. G. Titcomb, Trans. Faraday Soc. 65: 2758 (1969).

    Article  Google Scholar 

  17. H. Zabel and H. Peisl, Phys. Stat. Sol. (a) 37: K67 (1976).

    Article  ADS  Google Scholar 

  18. M. Futran, S. G. Coats, C. K. Hall and D. O. Welch, J. Chem. Phys. (to be published).

    Google Scholar 

  19. L. J. Raubenheimer and G. Gilat, Oak Ridge Nat’l. Lab. Internal Report No. ORNL-TM-1425 (1966).

    Google Scholar 

  20. M. A. Pick and D. O. Welch, Z. Physik Chem. (N.F.) 114: 37 (1979).

    Article  Google Scholar 

  21. T. L. Einstein (private communication).

    Google Scholar 

  22. K. Masuda and T. Mori, J. Physique 37: 569 (1976).

    Article  Google Scholar 

  23. S. Dietrich and H. Wagner, Z. Physik B 36: 121 (1979).

    Article  ADS  Google Scholar 

  24. R. A. Bond and D. K. Ross, J. Phys. F (to be published).

    Google Scholar 

  25. C. Demangeat, M. A. Khan, G. Moraitis and J. C. Parlebas, J. Physique 41: 1001 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Hall, C.K. (1983). A Review of the Statistical Theory of the Phase-Change Behavior of Hydrogen in Metals. In: Jena, P., Satterthwaite, C.B. (eds) Electronic Structure and Properties of Hydrogen in Metals. NATO Conference Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7630-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7630-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7632-3

  • Online ISBN: 978-1-4684-7630-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics