Forces, Dipole Force Tensor and Elastic Binding Energy in α-Palladium Hydrides

  • J. Khalifeh
  • G. Moraitis
  • C. Demangeat
Part of the NATO Conference Series book series (NATOCS, volume 6)


The forces resulting from the presence of one interstitial Hydrogen in Palladium are deduced from the variation of the total energy of the alloy up to first order in the atomic displacement. This variation includes the band term together with the electron-electron and ion — ion terms but, unfortunately, neglects the zero point motion of the Hydrogen. This tight-binding calculation is based on a rigidly moving wave function basis where the electronic structure of the unrelaxed alloy is determined by taking into account a perturbing potential up to the nearest neighbours of the Hydrogen atom. Expressions of the distribution of the forces and of the dipole force tensor P are derived in terms of the variation of the hopping integrals and of the energy levels. Estimations of P and of the forces up to third nearest neighbour shell of the Hydrogen atom are presented. Once this has been done the elastic binding energy can be obtained if we know the lattice Green function of the alloy. In the present model we replace this unknown exact Green function by a phenomenological expression of the host lattice Green function.


Interstitial Site Hydrogen Impurity Transfer Integral Neighbour Shell Metallic Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Friedel, Adv. in Phys. 3: 446 (1954).Google Scholar
  2. 2.
    D. Eshelby, Acta Met. 3 487 (1955).CrossRefGoogle Scholar
  3. 3.
    H. Kanzaki, Phys. Chem. Sol. 2 24 (1957).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V.K. Tewary, Adv. Phys. 22: 757 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    H.R. Schober and V. Lottner, Zeit. Phys. Chem. Wiesbaden 114: 203 (1979).Google Scholar
  6. 6.
    A. Blandin and J.L. Deplanté, J. Phys. Rad. 23: 609 (1962).CrossRefGoogle Scholar
  7. 7.
    G. Moraitis, B. Stupfel and F. Gautier, J. Phys. F 11: L 79 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    G. Moraitis and F. Gautier, J. Phys. F 9: 2025 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    G. Moraitis, D. Sc. Thesis, Strasbourg, 1978.Google Scholar
  10. 10.
    B. Stupfel, Thèse de 3e cycle, Strasbourg, 1980.Google Scholar
  11. 11.
    G. Moraitis, B. Stupfel and F. Gautier, to be published.Google Scholar
  12. 12.
    M.A. Khan, J.C. Parlebas and C. Demangeat, Phil. Mag. B 42: 111 (1980).CrossRefGoogle Scholar
  13. 13.
    M.A. Khan, G. Moraitis, J.C. Parlebas and . Demangeat in: 11th Int. Symp. on Elec. Struc. of Metals and Alloys, P. Ziesche ed., Gaussig, 50 (1981).Google Scholar
  14. 14.
    J. Khalifeh, G. Moraitis and C. Demangeat, J. Physique 43: 165 (1982).CrossRefGoogle Scholar
  15. 15.
    J. Khalifeh, G. Moraitis and C. Demangeat, J. Less Common Metals (1982); under press.Google Scholar
  16. 16.
    J. Khalifeh, D. Sc. Thesis, Strasbourg (1982).Google Scholar
  17. 17.
    P.H. Dederichs and J. Deutz, in Continuum Models of Discrete Systems, University of Waterloo Press, 329 (1980).Google Scholar
  18. 18.
    Dederichs and J. Deutz, Berichte der K.F.A. Jülich 1600 (1979).Google Scholar
  19. 19.
    I. Kramer, Diplomarbeit in Physik, Aachen (1980).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. Khalifeh
    • 1
  • G. Moraitis
    • 1
  • C. Demangeat
    • 1
  1. 1.L.M.S.E.S. (LA CNRS 306) — Université Louis PasteurStrasbourg CedexFrance

Personalised recommendations