Stabilities, Stoichiometries and Site Occupancies in Hydrides of Intermetallic Compounds

  • D. G. Westlake
Part of the NATO Conference Series book series (NATOCS, volume 6)


In the literature, one can find numerous attempts to explain the observed stabilities, stoichiometries and site occupancies in hydrides of the various families of intermetallic compounds. Some of the approaches to these problems are critically reviewed here. For some, but not all such hydrides, the stabilities have been shown by different researchers to correlate with the enthalpy for formation of the intermetallic compound, itself, or with cell size, or electronic properties, or elastic properties. It appears, therefore, that all of these effects may play a role, but none is dominant in all cases. The development of the procedure for qualitative and quantitative determinations of H-site occupancy from calculations of enthalpies for the formation of imaginary binary hydrides was reviewed. Such inspection raises the question of possible fortuitous agreement between experimental observations and predictions arising from the technique. The concepts of minimum hole size for H occupation and minimum H-H distance in stable hydrides of metals or intermetallic compounds have been discussed in terms of their importance to preferred H sites and to stoichiometry, and considerations necessary to a geometric model have been outlined. The model is used to rationalize observed H sites and stoichiometry of LaNi5Hx. The review points up the need for theoretical treatment leading to fundamental understanding of such systems.


Intermetallic Compound Hydrogen Absorption Site Occupancy Hole Size Solid State Comm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Beck, Investigation of hydriding characteristics of intermetallic compounds, Report Number LAR-55, Nov. 1961.Google Scholar
  2. 2.
    H. Oesterreicher, Hydrides of intermetallic compounds, Appl. Phys. 24:169 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    D. A. Robins, An interpretation of some of the properties of the transition metals and their alloys, J. Less-Common Metals 1:396 (1959).CrossRefGoogle Scholar
  4. 4.
    A. C. Switendick, Band structure calculations for metal hydrogen systems, Zeit. fir Phys. Chem. 117:89 (1979).CrossRefGoogle Scholar
  5. 5.
    A. C. Switendick, Electronic structure of non-stoichiometric cubic hydrides, J. Less-Common Met. 74:199 (1980).CrossRefGoogle Scholar
  6. 6.
    A. J. Maeland, L. E. Tanner and G. G. Libowitz, Hydrides of metallic glass alloys, J. Less-Common Met. 74:279 (1980).CrossRefGoogle Scholar
  7. 7.
    F. L. Carter, Atomic volume contraction in intermetallic hydride formers: A valuable new clue, J. Less-Common Met. 74:245 (1980).CrossRefGoogle Scholar
  8. 8.
    T. Takeshita, K. A. Gschneidner, Jr., D. K. Thome and O. D. McMasters, Low-temperature heat-capacity study of Haucke compounds CaNi5, YNi5, LaNi5 and ThNi5, Phys. Rev. B 21:5636 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    A. R. Miedema, The electronegativity parameter for transition metals: Heat of formation and charge transfer in alloys, J. Less-Common Met. 32:117 (1973).CrossRefGoogle Scholar
  10. 10.
    H. H. Van Mal, K. H. J. Buschow and A. R. Miedema, Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation, J. Less-Common Met. 35:65 (1974).CrossRefGoogle Scholar
  11. 11.
    A. R. Miedema, R. Boom and F. R. deBoer, On the heat of Formation of solid alloys, J. Less-Common Met. 41:283 (1975).CrossRefGoogle Scholar
  12. 12.
    K. H. J. Buschow and A. R. Miedema, Hydrogen absorption in rare earth intermetallic compounds, in: “Proc. Int. Symp. Hydrides for Energy Storage”, A. F. Andresen and A. J. Maeland, eds., Pergamon, New York (1978).Google Scholar
  13. 13.
    P. C. P. Bouten and A. R. Miedema, On the stable compositions in transition metal-nitrogen phase diagrams, J. Less-Common Met. 65:217 (1979).CrossRefGoogle Scholar
  14. 14.
    P. C. P. Bouten and A. R. Miedema, On the heats of formation of the binary hydrides of transition metals, J. Less-Common Met. 71:147 (1980).CrossRefGoogle Scholar
  15. 15.
    J. Shinar, I. Jacob, D. Davidov and D. Shaltiel, Hydrogen sorption properties in binary and pseudobinary intermetallic compounds, in: “Proc. Int. Symp. Hydrides for Energy Storage”, A. F. Andresen and A. J. Maeland, eds. Pergamon, New York (1978).Google Scholar
  16. 16.
    J.-J. Didisheim, K. Yvon, D. Shaltiel and P. Fischer, The distribution of the deuterium atoms in the deuterated hexagonal Laves-phase ZrMn2D3, Solid State Comm. 31:47 (1979).ADSCrossRefGoogle Scholar
  17. 17.
    I. Jacob and D. Shaltiel, Hydrogen sorption properties of some AB2 Laves-phase compounds, J. Less-Common Met. 65:117 (1979).CrossRefGoogle Scholar
  18. 18.
    J.-J. Didisheim, K. Yvon, P. Fischer and D. Shaltiel, The deuterium site occupation in ZrV2Dx as a function of the deuterium concentration, J. Less-Common Met. 73:355 (1980).CrossRefGoogle Scholar
  19. 19.
    I. Jacob, J. M. Bloch, D. Shaltiel and D. Davidov, On the occupation of interstitial sites by hydrogen atoms in intermetallic hydrides: A quantitative model, Solid State Comm. 35:155 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    C. E. Lundin, F. E. Lynch and C. B. Magee, A correlation between the interstitial hole sizes in intermetallic compounds and the thermodynamic properties of the hydrides formed from these compounds, J. Less Common-Met. 56:19 (1977).CrossRefGoogle Scholar
  21. 21.
    A. Percheron-Guégan, C. Lartigue, J. C. Achard, P. Germi, and F. Tasset, Neutron and x-ray diffraction profile analyses and structure of LaNi5, LaNi5-XAlx and LaNi5Nn intermetallics and their hydrides (deuterides), J. Less-Common Met. 74:1 (1980).CrossRefGoogle Scholar
  22. 22.
    D. M. Gruen, M. H. Mendelsohn and I. Sheft, Absorption of hydrogen by the intermetallics NdNi5 and LaNi4Cu and a correlation of cell volumes and desorption pressures, in: “Proc. Symp. Electrode Materials and Processes for Energy Conversion and Storage”, The Electrochemical Society, 1977, p. 482.Google Scholar
  23. 23.
    M. H. Mendelsohn and D. M. Gruen, The pseudo-binary system Zr(V1-xCrx)2: Hydrogen absorption and stability considerations, J. Less-Common Met. 78:275 (1981).CrossRefGoogle Scholar
  24. 24.
    Charles B. Magee, Structures and stabilities of the group IIIa dihydrides, J. Less-Common Met. 72:273 (1980).CrossRefGoogle Scholar
  25. 25.
    C. A. Bechman, A. Goudy, T. Takeshita, W. E. Wallace and R. S. Craig, Solubility of hydrogen in intermetallics containing rare earth and 3d transition metals, Inorganic Chemistry 15:2184 (1976).CrossRefGoogle Scholar
  26. 26.
    T. Takeshita, K. A. Gschneidner, Jr. and J. F. Lakner, High pressure hydrogen absorption study on YNi5, LaPt5 and ThNi5, J. Less-Common Met. 78:P43 (1981).CrossRefGoogle Scholar
  27. 27.
    T. Takeshita, G. Dublon, O. D. McMasters and K. A. Gschneidner, Jr., Low temperature heat capacity studies on hydrogen absorbing intermetallic compounds, in: “The Rare Earths in Modern Science and Technology”, Vol. 2, G. J. McCarthy, J. J. Rhyne and H. B. Silber, eds., Plenum, New York (1980).Google Scholar
  28. 28.
    Y. Chung, T. Takeshita, O. D. McMasters and K. A. Gschneidner, Jr., Influence of the lattice and electronic factors on the hydrogenation properties of the RNi5-base (R is a rare earth) Haucke comounds: Results of low temperature heat capacity measurements, J. Less-Common Met. 74: 217 (1980).CrossRefGoogle Scholar
  29. 29.
    M. H. Mendelsohn, D. M. Gruen and A. E. Dwight, The effect of aluminum additions on the structural and hydrogen absorption properties of AB5 alloys with particular reference to the LaNi5-X,Alx ternary alloy system, J. Less-Common Met. 63:193 (1979).CrossRefGoogle Scholar
  30. 30.
    D. Fruchart, A. Rouault, C. B. Shoemaker and D. P. Shoemaker, Neutron diffraction studies of the cubic ZrCr2Dx and ZrV2Dx(Hx) phases, J. Less-Common Met. 73:363 (1980).CrossRefGoogle Scholar
  31. 31.
    J.-J. Didisheim, K. Yvon, P. Fischer and P. Tissot, Order-disorder phase transition in ZrV2D3.6 Solid State Comm. 38:637 (1981).ADSCrossRefGoogle Scholar
  32. 32.
    I. Jacob, D. Shaltiel, D. Davidov and I. Miloslayski, A phenomenological model for the hydrogen absorption capacity in pseudo-binary Laves phase compounds, Solid State Comm. 23:669 (1977).ADSCrossRefGoogle Scholar
  33. 33.
    I. Jacob, A. Stern, A. Moran, D. Shaltiel and D. Davidov, Hydrogen absorption in (ZrxTil-X)B2 (B F. Cr, Mn) and the phenomenological model for the absorption capacity in pseudo-binary Laves-phase compounds, J. Less-Common Met. 73:369 (1980).CrossRefGoogle Scholar
  34. 34.
    H. Oesterreicher, Queries concerning local models for hydrogen uptake in metal hydrides, J. Phys. Chem. 85:2319 (1981).CrossRefGoogle Scholar
  35. 35.
    D. G. Westlake, Stoichiometrics and interstitial site occupation in the hydrides of ZrNi and other isostructural intermetallic compounds, J. Less-Common Met. 75:177 (1980).CrossRefGoogle Scholar
  36. 36.
    D. G. Westlake, H. Shaked, P. R. Mason, B. R. McCart, M. H. Mueller, T. Matsumoto and M. Amano, Interstitial site occupation in ZrNiH, to be published in J. Less-Common Met., “Proc. Int. Symp. on the Properties and Applications of Metal Hydrides-II”, Toba, Japan, 1982.Google Scholar
  37. 37.
    D. P. Shoemaker and C. B. Shoemaker, Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves phases, J. Less-Common Met. 68:43 (1979).CrossRefGoogle Scholar
  38. 38.
    D. P. Shoemaker, C. B. Shoemaker and D. Fruchart, Predictions and observations concerning hydrogen occupancy of tetrahedral interstices in certain binary alloys, in: “Program and Abstracts of the Summer Meeting, American Crystallographic Association”, Calgary, Canada, 1980.Google Scholar
  39. 39.
    C. B. Magee, James Liu and C. E. Lundin, Relationships between intermetallic compound structure and hydride formation, J. Less-Common Met. 78:119 (1981).CrossRefGoogle Scholar
  40. 40.
    A. V. Irodova, V. P. Glazkov, V. A. Somenkov and S. Sh. Shil’shtein, Hydrogen ordering in the cubic Laves phase HfV2, J. Less-Common Met. 77:89 (1981).CrossRefGoogle Scholar
  41. 41.
    G. Boureau, A simple method of calculation of the configurational entropy for interstitial solutions with short range repulsive interactions, J. Phys. Chem. Solids 42:743 (1981).ADSCrossRefGoogle Scholar
  42. 42.
    J.-J. Didisheim, K. Yvon, D. Shaltiel, P. Fischer, P. Bujard and E. Walker, The distribution of the deuterium atoms in the deuterated cubic Laves-phase ZrV2D4.5, Solid State Comm. 32:1087 (1979).ADSCrossRefGoogle Scholar
  43. 43.
    W. E. Wallace, H. E. Flotow and D. Ohlendorf, Configurational entropy and structure of 6-LaNi5 hydride, J. Less-Common Met. 79:157 (1981).CrossRefGoogle Scholar
  44. 44.
    G. Busch, L. Schlapbach, W. Thoeni, Th. v. Waldkirch, P. Fischer, A. Furrer, and W. Haelg, Hydrogen in La-Ni compounds: Localization and diffusion, in: “Proc. of the 2nd Int. Congress on Hydrogen in Metals”, Paris, Vol. 1, Pergamon Press, New York (1978).Google Scholar
  45. 45.
    J. C. Achard, C. Lartigue, A. Percheron-Guégan, J. C. Mathieu, A. Pasturel and F. Tasset, Reply to “Configurational entropy and structure of 6-LaNi5 hydride”, J. Less-Common Met. 79:161 (1981)CrossRefGoogle Scholar
  46. 46.
    E. J. Teatum, K. A. Gschneidner, Jr., and J. T. Waber, Compilation of calculated data useful in predicting metallurgical behavior of the elements in binary alloy systems, Report No. LA-4003, 1968.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • D. G. Westlake
    • 1
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations