Early Chemical Events and Initial DNA Damage

  • Aloke Chatterjee
  • William R. Holley
Part of the Basic Life Sciences book series (BLSC, volume 58)


Early chemical events (between 10−15 and 10−6 seconds) as they relate to the evolution of damage in radiation biology have been described in terms of a theoretical model. DNA is the target of concern in this model, and both indirect and direct effects have been explicitly accounted for in evaluating yields of strand breaks. In the indirect-effect considerations, a quantitative estimation of the time decay of water radical species—beginning with their production at 10−14 seconds and leading to the interactions of hydroxyl radicals with DNA—has been a major focus. A method based on stopping-power theory and the Bragg rule has been described to account for direct effects. However, no attempt is made to follow all the chemical events that take place between the creation of initial (10−6 seconds) damage and the observable strand break yields. The theoretical calculations refer to a simple aqueous system containing DNA molecules and scavenger (Tris). The theoretical results of strand break yields by different heavy charged particles are in good agreement with experimental cellular data under conditions of minimal enzymatic repair.


Strand Break Energy Deposition Linear Energy Transfer Radiation Chemistry Water Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. D. Cooper and R. W. Wood, eds. Physical Mechanisms in Radiation Biology. lèchnical Information Center, Office of Information Services, United States Atomic Energy Commission (1974).Google Scholar
  2. 2.
    M. Zaider, D. J. Brenner, and W. E. Wilson. The Application of Yack Calculations to Radiobiology. I. Monte Carlo Simulation of Proton ‘Yacks. Radiat. Res. 95: 231–247 (1983).CrossRefGoogle Scholar
  3. 3.
    C. D. Jonah and J. R. Miller. Yield and Decay of the OH Radical from 200 ps to 3 ns. J. Phys. Chem. 81: 1974–1976 (1977).CrossRefGoogle Scholar
  4. 4.
    C. D. Jonah, M. S. Matheson, J. R. Miller, and E. J. Hart. Yield and Decay of the Hydrated Electron from 100 ps to 3 ns. J. Phys. Chem. 80: 1267–1270 (1976).CrossRefGoogle Scholar
  5. 5.
    D. J. Brenner and M. Zaider. Stochastic and Deterministic Treatments of the Time Decay of Species Created by Heavy-Charged Particle Interactions. Radiat. Prot Dosimetry 13: 127 (1985).Google Scholar
  6. 6.
    A. Chatterjee and J. L. Magee. Radiation Chemistry of Heavy-Particle Yacks. 2. Fricke Dosimeter System. J. Phys. Chem. 84: 3537–3543 (1980).CrossRefGoogle Scholar
  7. 7.
    J. E. Turner, J. L. Magee, R. N. Hamm, A. Chatterjee, H. A. Wright, and R. H. Ritchie. Early Events in Irradiated Water. In Seventh Symposium on Microdosimetry, Oxford, U.K, J. Booz, H. G. Ebert, and H. D. Hartfield, eds., p. 507. Commission of the European Communities, Hardwood, London (1981).Google Scholar
  8. 8.
    R. H. Ritchie, R. N. Hamm, J. E. Tùrner, and H. A. Wright. The Interaction of Swift Electrons with Liquid Water. In Sixth Symposium on Microdosimetry, Brussels, Belgium, J. Booz and H. G. Ebert, eds., pp. 345–354. Commission of the European Communities, Hardwood, London (1978).Google Scholar
  9. 9.
    A. Mozumder and J. L. Magee. The Early Events of Radiation Chemistry. Int. J. Radiat. Phys. Chem. 7: 83 (1975).CrossRefGoogle Scholar
  10. 10.
    H. A. Grunder, W. D. Hartsough, and E. J. Lofgren. Acceleration of Heavy Ions at the Bevatron. Science 174: 1128–1129 (1971).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Chatterjee. Interaction of Ionizing Radiation with Matter. In A Textbook of Modern Radiation Chemistry, Farhataziz and M.A.J. Rodgers, eds., pp. 1–28. Verlag Chemie Internationa (1986).Google Scholar
  12. 12.
    C. A. Tobias, E. A. Blakely, P. Y. Chang, L. Lommel, and R. Roots. Response of Sensitive Human Ataxia and Resistant Tl Cell Lines to Accelerated Heavy Ions. Br. J. Cancer 49, Suppl. VI: 175–185 (1984).Google Scholar
  13. 13.
    A. Chatterjee, H. D. Maccabee, and C. A. Tbbias. Radial Cutoff LET and Radial Cutoff Dose Calculations for Heavy Charged Particles in Water. Radiat. Res. 54: 479–494 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Chatterjee and H. J. Schaefer. Microdosimetric Structure of Heavy Ion Tracks in Tissue. Radiat. Environ. Biophys. 13: 215–227 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    M. N. Varma and J. W. Baum. Energy Deposition in Nanometer Regions by 377 MeV/Nucleon 20 Ne Ions. Radiat. Res. 81: 355–363 (1980).CrossRefGoogle Scholar
  16. 16.
    J. L. Magee and A. Chatterjee. Radiation Chemistry of Heavy Particle Tracks. 1. General Considerations. J. Phys. Chem. 84: 3529–3536 (1980).CrossRefGoogle Scholar
  17. 17.
    J. L. Magee and A. Chatterjee. The Track Reactions of Radiation Chemistry. In Kinetics of Nonhomogeneous Processes, Gordon R. Freeman, ed., pp. 171–214. John Wiley and Sons, Inc. (1986).Google Scholar
  18. 18.
    F. Hutchinson. Chemical Changes Induced in DNA by Ionizing Radiation. Progress in Nucleic Acid Research and Molecular Biology 32: 115–154 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    J. F. Ward and M. M. Urist. y-Irradiation of Aqueous Solutions of Polynucleotides. Int. J. Radiat. Biol. 12: 209 (1967).CrossRefGoogle Scholar
  20. 20.
    A. Chatterjee, P. Koehl, and J. L. Magee. Theoretical Consideration of the Chemical Pathways for Radiation-Induced Strand Breaks. Adv. Space Res. 6(11): 97–105 (1986).Google Scholar
  21. 21.
    J. Türner, J. L. Magee, H. A. Wright, A. Chatterjee, R. N. Hamm, and R. H. Ritchie. Physical and Chemical Development of Electron Tracks in Liquid Water. Radiat. Res. 96: 437–449 (1983).CrossRefGoogle Scholar
  22. 22.
    H. A. Wright, R. N. Hamm, J. E. TUrner, J. L. Magee, and A. Chatterjee. Physical and Chemical Structure of Charged Particle Tracks in Liquid Water. In Proc. Third Workshop on Heavy Charged Particles in Biology and Medicine, GSI, Darmstadt, Germany, Bi, (1987).Google Scholar
  23. 23.
    M. V. Smoluchowski. Drei Vortrage über Diffusion, Brownsche Molekular-bewegung and Koagulation von Kolloidteilchen. Physik Zeitschr. 17: 557 (1916).Google Scholar
  24. 24.
    E Hutchinson and J. Arena. Destruction of the Activity of Deoxyribonucleic Acid in Irradiated Cells. Radiat. Res. 13: 137 (1960).PubMedCrossRefGoogle Scholar
  25. 25.
    H. B. Michaels and J. W Hunt. Reactions of the Hydroxyl Radical with Polynucleotides. Radiat. Res. 56: 57–70 (1973).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Arnott and D.W.L. Hukins. Optimized Parameters for A-DNA and B-DNA. Biochem. Biophys. Res. Comm. 47: 1504–1509 (1972).PubMedCrossRefGoogle Scholar
  27. 27.
    W. R. Holley, A. Chatterjee, and J. L. Magee. Production of DNA Strand Breaks by Direct Effects of Heavy Charged Particles. Radiat. Res. 121: 161–168 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Inagaki, R. N. Hamm, E. T. Arakawa, and L. R. Painter. Optical and Dielectric Properties of DNA in the Extreme Ultraviolet. J. Chem. Phys. 61: 4246–4250 (1974).CrossRefGoogle Scholar
  29. 29.
    A. Mozumder. Charged Particle Tracks and their Structure. In Advances in Radiation Chemistry, M. Burton and J. L. Magee, eds., 1: 1–102. Wiley-Interscience, New York (1969).Google Scholar
  30. 30.
    J. E. Minter, R. N. Hamm, H. A. Wright, R. H. Ritchie, J. L. Magee, A. Chatterjee, and Wesley E. Botch. Studies to Link the Basic Radiation Physics and Chemistry of Liquid Water. Radiat. Phys. Chem. 32 (3): 503–510 (1988).Google Scholar
  31. 31.
    A. Chatterjee and W. Holley. Energetic Electron ‘Racks and DNA Strand Breaks. Nucl. Tracks and Radiat. Meas. 16 (2/3): 127–133 (1989).CrossRefGoogle Scholar
  32. 32.
    R. Roots, A. Chatterjee, P. Chang, L. Lommel and E. A. Blakely. Characterization of Hydroxyl Radical Induced Damage after Sparsely and Densely Ionizing Radiation. Int. J. Radiat. Biol. 47: 157–166 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Aloke Chatterjee
  • William R. Holley
    • 1
  1. 1.Division of Cell and Molecular Biology, Lawrence Berkeley LaboratoryUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations