Energy Transfer, Charge Transfer, and Proton Transfer in Molecular Composite Systems

  • Michael Kasha
Part of the Basic Life Sciences book series (BLSC, volume 58)


Models for the fundamental mechanisms of excitation energy transfer, including cases involving singlet oxygen states, twisting-intramolecular-charge-transfer (TICT) states, and intramolecular proton transfer, are described in terms of elementary concepts and energy diagrams. Three limiting cases of energy transfer are distinguished, Davydov free excitons (Simpson and Peterson strong coupling) and localized excitons (weak coupling), and the Förster mechanism of vibrational-relaxation energy transfer. The prominent rôle of the singlet molecular oxygen states is described, together with the rôle of simultaneous transitions for molecular oxygen pairs. The origin of sudden polarization via the TICT-state potential is discussed and the generality of this phenomenon emphasized. The intramolecular proton-transfer phenomenon is outlined, and its role in molecular excitation transient phenomena is described. The complex interaction of all of these excitation mechanisms in determining photochemical and radiation chemical pathways is suggested.


Proton Transfer Singlet Oxygen Exciton State Transition Moment Intramolecular Proton Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kasha. Relation Between Exciton Bands and Conduction Bands in Molecular Lamellar Systems. Rev. Modern Phys., 31: 162 (1959).CrossRefGoogle Scholar
  2. 2.
    J. I. Frenkel. On the Absorption of Light and the Trapping of Electrons and Positive Holes in Crystalline Dielectrics. Phys. Rev. 37: 17, 1276 (1931);CrossRefGoogle Scholar
  3. J. I. Frenkel. Physik Z. Sowjetunion, 9: 158 (1936).Google Scholar
  4. 3.
    J. Franck and E. Teller. Migration and Photochemical Action of Excitation Energy in Crystals. J. Chem. Phys. 6: 861 (1938).CrossRefGoogle Scholar
  5. 4.
    A. S. Davydov. Theory of Molecular Excitons (transi. by M. Kasha and M. Oppenheimer, Jr.), McGraw-Hill Book Co., Inc., New York (1962), 174 pp.Google Scholar
  6. 5.
    R. S. Knox. Theory of Excitons, Academic Press, New York (1963), 207 pp.Google Scholar
  7. 6.
    E. G. McRae and M. Kasha. (Note) The Enhancement of Phosphorescence Ability Upon Aggregation of Dye Molecules. J. Chem. Phys. 28: 721 (1958).CrossRefGoogle Scholar
  8. 7.
    E. G. McRae and M. Kasha. The Molecular Exciton Model. In Physical Processes in Radiation Biology (Augenstein, Rosenberg and Mason, eds.), p. 23–42. Academic Press, New York (1964).Google Scholar
  9. 8.
    M. Kasha, H. R. Rawls and M. A. El-Bayoumi. The Exciton Model in Molecular Spectroscopy. Pure and Appl. Chem. 11: 371 (1965).CrossRefGoogle Scholar
  10. 9.
    M. Kasha. Molecular Excitons in Small Aggregates. In Spectroscopy of the Excited State (B. diBartolo, ed.), pp. 337–363. Plenum Press, New York (1976).Google Scholar
  11. 10.
    R. M. Hochstrasser and M. Kasha. Application of the Exciton Model to Molecular Lamellar Systems. Photochem. Photobiol. 3: 317 (1964).CrossRefGoogle Scholar
  12. 11.
    D. S. McClure. Energy Transfer in Molecular Crystals and in Double Molecules. Can. J. Chem. 36: 59 (1958).CrossRefGoogle Scholar
  13. 12.
    E. E. Jelley. Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature 138: 1009 (1936);CrossRefGoogle Scholar
  14. E. E. Jelley. Absorption Bands in the Spectrum of 4c-Isocyanine Dyes. Nature 139: 378 (1937);CrossRefGoogle Scholar
  15. E. E. Jelley. Molecular, Nematic and Crystal States of 1,1-Diethyl-Ii-Cyanine Chloride. Nature 139: 631 (1937).CrossRefGoogle Scholar
  16. 13.
    G. Scheibe et al. Über die Veränderlichkeit des Absorptionsspektrums einiger Sensibilisierungsfarbstoffe und deren Ursache, Z. angew. Chem. 49: 563 (1936);Google Scholar
  17. G. Scheibe et al. Über die Veränderlichkeit des Absorptionsspektren in Lösung und die van der Waalsschen Kräfte als ihre Ursache, Z. angew. Chem. 50: 51 (1937).Google Scholar
  18. G. Scheibe et al. Über die Veränderlichkeit des Absorptionsspektren in Lösung und die Nebenvalenzen als ihre Ursache, Z. angew. Chem. 50: 212 (1937).CrossRefGoogle Scholar
  19. 14.
    S. E. Sheppard. The Effects of Environment and Aggregation on the Absorption Spectra of Dyes, Rev. Mod. Phys. 14: 303 (1942).CrossRefGoogle Scholar
  20. 15.
    W. T. Simpson and D. L. Peterson. Coupling Strength for Resonance Force Transfer of Electronic Energy in Van der Waals Solids, J. Chem. Phys. 26: 588 (1957).CrossRefGoogle Scholar
  21. 16.
    Th. Förster. Excitation Transfer. In Comparative Effects of Radiation (M. Burton, J. S. Kirby-Smith and J. L. Magee, eds.), p. 300–341. John Wiley and Sons, Inc., New York, (1960).Google Scholar
  22. 17.
    Th. Förster. Delocalized Excitation and Excitation Transfer. In Modern Quantum Chemistry (O. Sinanoglu, ed.), Vol. III, p. 93–137. Academic Press, New York (1965).Google Scholar
  23. 18.
    M. Kasha. Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiation Res. 20: 53, 55 (1963).PubMedCrossRefGoogle Scholar
  24. 19.
    Th. Förster. Zwischenmolekulare Energiewanderung, Naturwiss. 33: 166–175 (1946).CrossRefGoogle Scholar
  25. 20.
    Th. Förster. Zwischenmolekulare Energiewanderung und Fluorescenz, Ann. Physik 2: 55–73 (1948).CrossRefGoogle Scholar
  26. 21.
    P. DeTar and M. Kasha. Unpublished Work, Florida State University, Tallahassee, Florida.Google Scholar
  27. 22.
    W. Moffitt. The Optical Rotatory Dispersion of Simple Polypeptides. II, Proc. Nat. Acad. Sci. (US), 42: 736 (1956).CrossRefGoogle Scholar
  28. W. Moffitt. Optical Rotatory Dispersion of Helical Polymers, J. Chem. Phys. 25: 467 (1956).CrossRefGoogle Scholar
  29. 23.
    W. B. Gratzer, G. M. Holzwarth and P. Doty. Polarization of the Ultraviolet Absorption Bands in Alpha-Helical Polypeptides. Proc. Nat. Acad. Sci. (USA) 47: 1785 (1961).CrossRefGoogle Scholar
  30. 24.
    G. Holzwarth, W. B. Gratzer and P. Doty. The Optical Activity of Polypeptides in the Far Ultraviolet. J. Am. Chem. Soc. 84: 3194 (1962).CrossRefGoogle Scholar
  31. 25.
    P. Doty, J. Marmur, J. Eigner and C. Schildkraut. Strand Separation and Specific Recombination in Deoxyribonucleic Acids: Physical Chemical Studies. Proc. Nat. Acad. Sci. (USA) 46: 461 (1960).CrossRefGoogle Scholar
  32. 26.
    W. Rhodes. Hyperchromism and Other Spectral Properties of Helical Polynucleotides, J. Am. Chem. Soc. 83: 3609 (1961).CrossRefGoogle Scholar
  33. 27.
    M. Kasha, M. A. El-Bayoumi and W. Rhodes. Excited States of Nitrogen Base-Pairs and Polynucleotides. J. Chim. Phys. 58: 816 (1961).Google Scholar
  34. 28.
    A. Rich and M. Kasha. The n - n* Transition in Nucleic Acids and Polynucleotides. J. Am. Chem. Soc. 82: 6197 (1960).CrossRefGoogle Scholar
  35. 29.
    M. Kasha. The Nature and Significance of n -. n* Transitions. In Light and Life (W. D. McElroy and B. Glass, eds.), pp. 31–64. Johns Hopkins University Press, Baltimore, Maryland (1961).Google Scholar
  36. 30.
    R. M. Hochstrasser and M. Kasha. Application of the Exciton Model to Molecular Lamellar Systems. Photochem. Photobiol. 3: 317 (1964).CrossRefGoogle Scholar
  37. 31.
    S. S. Brody and M. Brody. Spectral Characteristics of Aggregated Chlorophyll and Its Possible Role in Photosynthesis. Nature 189: 547 (1961).CrossRefGoogle Scholar
  38. S. S. Brody and M. Brody. Fluorescence Properties of Aggregated Chlorophyll In Vivo and In Vitro. Trans. Faraday Soc. 58: 416 (1962).CrossRefGoogle Scholar
  39. 32.
    K. Maruyama and A. Osuka. A Chemical Approach Toward Photosynthetic Reaction Center, Pure and Appl. Chem. 62: 1511–1520 (1990).CrossRefGoogle Scholar
  40. 33.
    G. N. Lewis. The Magnetochemical Theory, J. Am. Chem. Soc. 38:762 (1916); Chem. Rev. 1: 233 (1924).CrossRefGoogle Scholar
  41. 34.
    R. S. Mulliken. Interpretation of the Atmospheric Oxygen Bands; Electronic Levels of the Oxygen Molecule, Nature 122: 505 (1928).CrossRefGoogle Scholar
  42. 35.
    L. Herzberg and G. Herzberg. Fine Structure of the Infrared Atmospheric Oxygen Bands, Astrophys. J. 105: 353 (1947).CrossRefGoogle Scholar
  43. H. D. Babcock and L. Herzberg. Fine Structure of the Red System of Atmospheric Oxygen Bands, Astrophys. J. 108: 167 (1948).CrossRefGoogle Scholar
  44. 36.
    A. U. Khan and M. Kasha. The Red Chemiluminescence of Molecular Oxygen in Aqueous Solution. J. Chem. Phys. 39: 2105 (1963).CrossRefGoogle Scholar
  45. A. U. Khan and M. Kasha. Rotational Structure in the Chemiluminescence Spectrum of Molecular Oxygen in Aqueous Systems. Nature 204: 241 (1964).CrossRefGoogle Scholar
  46. 37.
    A. U. Khan and M. Kasha. Chemiluminescence Arising from Simultaneous Transitions in Pairs of Singlet Oxygen Molecules. J. Am. Chem. Soc. 92: 3293 (1970).CrossRefGoogle Scholar
  47. 38.
    E.g., A. Paul Schaap (ed.), Singlet Molecular Oxygen, 399 pp. Dowden, Hutchinson and Ross, Inc., Stroudsberg, Pennsylvania (1976).Google Scholar
  48. H. H. Wasserman and R. W. Murray (eds.), Singlet Oxygen, 684 pp. Academic Press, New York (1979).Google Scholar
  49. A. A. Frimer (ed.), Singlet 0 2, Vols. I-IV. CRC Press, Inc., Boca Raton, Florida (1985).Google Scholar
  50. 39.
    A. U. Khan and M. Kasha. (Note) Physical Theory of Chemiluminescence in Systems Evolving Molecular Oxygen, J. Am. Chem. Soc. 88: 1574 (1966).CrossRefGoogle Scholar
  51. 40.
    M. Kasha and D. Brabham. Singlet Oxygen Electronic Structure and Photosensitization. In Singlet Oxygen (H. Wasserman and R. W. Murray, eds.), p. 1–33. Academic Press, New York (1979).Google Scholar
  52. 41.
    T. Dougherty. Activated Dyes as Antitumor Agents, J. Nat. Cancer Inst. 52: 1333 (1974).PubMedGoogle Scholar
  53. T. Dougherty, C. J. Gomer and K. R. Weishaupt. Energetics and Efficiency of Photoinactivation of Murine Tumor Cells Containing Hemotoporphyrin, Cancer Res. 36: 2330 (1976).PubMedGoogle Scholar
  54. T. Dougherty, J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle and A. Mittleman. Photoradiation Therapy for the Treatment of Malignant Tumors, Cancer Res. 38: 2628 (1978).PubMedGoogle Scholar
  55. 42.
    A. U. Khan and M. Kasha. Direct Spectroscopic Observation of Singlet Oxygen Emission at 1268 nm Excited by Sensitizing Dyes of Biological Interest in Liquid Solution. Proc. Nat. Acad. Sci. (USA), 76: 6047 (1979).CrossRefGoogle Scholar
  56. 43.
    R. S. Mulliken and W. B. Person. Molecular Complexes, Wiley Interscience, New York (1969), 498 pp.Google Scholar
  57. 44.
    W. Rettig. Charge Separation in Excited States of Decoupled Systems–TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Processes of Vision and Photosynthesis, Angew. Chem. Int. Ed. 25: 971–988 (1986).CrossRefGoogle Scholar
  58. 45.
    E. Lippert, W. Rettig, V. Bonaéié-Kouteckÿ, F. Heisel and J. A. Miehé. Photophysics of Internal Twisting. In Advances in Chemical Physics (I. Prigogine and S. A. Rice, eds.), p. 1–173. WileyInterscience, New York (1987).Google Scholar
  59. 46.
    V. Bonaéié-Kouteckÿ, J. Koutecky and J. Michl. Neutral and Charged Biradicals, Zwitterions, Tunnels in Si, and Proton Translocation: Their Role in Photochemistry, Photophysics, and Vision, Angew. Chem. Int. Ed. 26: 170–189 (1987).CrossRefGoogle Scholar
  60. 47.
    Z. R. Grabowski, K. Rotkiewicz, A. Siemiarczuk, D. J. Cowley and W. Baumann. Twisted Intra-molecular Charge Transfer States (TICT). A New Class of Excited States with a Full Charge Separation, Nouv. J. Chim. 3: 443–454 (1979).Google Scholar
  61. 48.
    J. N. Murrell. The Electronic Spectrum of Aromatic Molecules. VI: The Mesomeric Effect, Proc. Phys. Soc. (London) A68: 969–975 (1955).CrossRefGoogle Scholar
  62. Cf. M. Godfrey and J. N. Murrell. Substituent Effects on the Electronic Spectra of Aromatic Hydrocarbons. III. An Analysis of the Spectra of Amino-and Nitrobenzenes in Terms of the Localized-Orbital Model, Proc. Roy. Soc. A278: 57, 71 (1969).Google Scholar
  63. 49.
    L. Salem and C. Rowland. The Electronic Properties of Diradicals, Angew. Chem. Int. Ed. 11: 92–111 (1972).CrossRefGoogle Scholar
  64. 50.
    J. Heldt and M. Kasha. Dialectric Medium Interactions in Proton-Transfer and Charge-Transfer Molecular Electronic Excitation. J. Molec. Liquids 41: 305 (1989).CrossRefGoogle Scholar
  65. P. F. Barbara and H. P. Trommsdorff (eds.). Spectroscopy and Dynamics of Elementary Proton Transfer in Polyatomic Systems Chem. Phys. Special Issue 136:153–160 (1989).Google Scholar
  66. 52.
    D. McMorrow and M. Kasha. Intramolecular Excited-State Proton Transfer of 3-Hydroxyflavone. H-Bonding Solvent Perturbations. J. Phys. Chem. 88: 2235 (1984).CrossRefGoogle Scholar
  67. 53.
    P. J. Sengupta and M. Kasha. Excited State Proton-Transfer Spectroscopy of 3-Hydroxyflavone and Quercetin. Chem. Phys. Lett. 68: 382 (1979).CrossRefGoogle Scholar
  68. 54.
    W. E. Brewer, S. L. Studer and P.-T. Chou. Temperature-Dependent Study of the Ground-State Reverse Proton Transfer of 3-Hydroxyflavone, Chem. Phys. Lett. 158: 345–350 (1989).CrossRefGoogle Scholar
  69. W. E. Brewer, S. L. Studer, M. Standiford and P.-T. Chou. Dynamics of the Triplet State and the Reverse Proton Transfer of 3-Hydroxyflavone, J. Phys. Chem. 93: 6088 (1989).CrossRefGoogle Scholar
  70. M. L. Martinez, S. L. Studer and P. T. Chou. Direct Evidence of the Triplet State Resulting in the Slow Reverse Proton-Transfer Reaction of 3-Hydroxyflavone, J. Am. Chem. Soc. 112: 2427–2429 (1990).CrossRefGoogle Scholar
  71. 55.
    M. Kasha. Proton-Transfer Spectroscopy. Perturbation of the Tautomerization Potential. J. Chem. Soc. Faraday Transactions, II 82: 2379 (1986).Google Scholar
  72. 56.
    J. Heldt, D. Gormin and M. Kasha. A Comparative Picosecond Spectroscopic Study of the Competitive Triple Fluorescence of Aminosalicylates and Benzanilides. Chem. Phys. 136: 321 (1989).CrossRefGoogle Scholar
  73. 57.
    P.-T. Chou, D. McMorrow, T. J. Aartsma and M. Kasha. The Proton-Transfer Laser. Gain Spectrum and Amplification of Spontaneous Emission of 3-Hydroxyflavone. J. Phys. Chem. 88: 4596 (1984).CrossRefGoogle Scholar
  74. D. Parthenopoulos and M. Kasha. Coherent Pulse and Environmental Characteristics of the Intermolecular Proton-Transfer Lasers Based on 3-Hydroxyflavone and Fisetin. Chem. Phys. Lett. 146: 77 (1988).CrossRefGoogle Scholar
  75. 58.
    A. U. Khan and M. Kasha. Mechanism of Four-Level Laser Action in Solution Excimer and Excited State Proton-Transfer Cases. Proc. Nat. Acad. Sci. (US) 80: 1767 (1983).CrossRefGoogle Scholar
  76. 59.
    P.-T. Chou and T. J. Aartsma. The Proton-Transfer Laser. Dual Wavelength Lasing Action in Binary Dye Mixtures Involving 3-Hydroxyflavone, J. Phys. Chem. 90: 721–723 (1986).CrossRefGoogle Scholar
  77. T. Dzugan, J. Schmidt and T. J. Aartsma. On the Ground-State Tautomerization of 3-Hydroxyflavone, Chem. Phys. Lett. 127: 336 (1986).CrossRefGoogle Scholar
  78. 60.
    A. Mordzinski and H. K. Grellman. Excited-State Proton-Transfer Reactions in 2-(2-Hydroxyphenyl)benzoxazole. Role of Triplet States, J. Phys. Chem. 90: 5503–5506 (1986).CrossRefGoogle Scholar
  79. 61.
    D. Gormin, J. Heldt and M. Kasha. Molecular Phosphorescence Enhancement via Tunneling Through Proton-Transfer Potentials. J. Phys. Chem. 94: 1185 (1990).CrossRefGoogle Scholar
  80. 62.
    M. Itoh, Y. Tanimoto and K Tokumura. Transient Absorption Study of the Intramolecular Excited-State and Ground-State Proton Transfer in 3-Hydroxyflavone and 3-Hydroxychromone, J. Am. Chem. Soc. 105: 3339–3340 (1983).CrossRefGoogle Scholar
  81. M. Itoh and Y. Fujiwara. Two-Step Laser Excitation Fluorescence Study of the Ground-and Excited-State Proton Transfer in 3-Hydroxyflavone and 3-Hydroxychromone, J. Phys. Chem. 87: 4558–4560 (1983)CrossRefGoogle Scholar
  82. M. Itoh and Y. Fujiwara. The Ground State Tautomer in the Excited State Relaxation Process of 3-Hydroxyflavone at Room Temperature, Chem. Phys. Lett. 130: 365–367 (1986).CrossRefGoogle Scholar
  83. 63.
    G.-Q. Tang, J. MacInnis and M. Kasha. Proton-Transfer Spectroscopy of Benzanilide. The AmideImidole Tautomerism. J. Am. Chem. Soc. 109: 2531 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Michael Kasha
    • 1
  1. 1.Institute of Molecular Biophysics and Department of ChemistryFlorida State UniversityTallahasseeUSA

Personalised recommendations