Radiation Interactions in High-Pressure Gases

  • Loucas G. Christophorou
Part of the Basic Life Sciences book series (BLSC, volume 58)


This paper concerns basic radiation interaction processes in dense fluids and interphase studies aimed at interfacing knowledge on radiation interaction processes in low-pressure gases and knowledge on such processes in liquids. Microscopic and macroscopic properties of—and processes in—matter in the intermediate density range between the low-pressure gas and the condensed phase are discussed. Results of recent studies on the effect of the density and nature of the medium on electron production in irradiated fluids and on the state, energy, transport, and attachment of slow excess electrons in dense fluids (high-pressure gases and dielectric liquids) are described. The possible significance of electron-molecule interactions in dense gases in establishing mechanisms of radio-biological action is indicated.


Excess Electron Electron Energy Distribution Function Electron Attachment Dielectric Liquid Multiphoton Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. G. Christophorou. Atomic and Molecular Radiation Physics. Wiley-Interscience, New York (1971).Google Scholar
  2. 2.
    L. G. Christophorou, ed. Electron-Molecule Interactions and Their Applications, Vol. 1 and 2. Academic Press, New York (1984).Google Scholar
  3. 3.
    G. R. Freeman, ed. Kinetics of Nonhomogeneous Processes. Wiley-Interscience, New York (1987).Google Scholar
  4. 4.
    E. E. Kunhardt, L. G. Christophorou, and L. H. Luessen, eds. The Liquid State and Its Electrical Properties. NATO ASI Series B: Physics, Vol. 193, Plenum Press, New York (1987).Google Scholar
  5. 5.
    H.S.W. Massey. Electronic and Ionic Impact Phenomena, Vo1.I-IV. Oxford Press (1969).Google Scholar
  6. 6.
    M. Inokuti. In Applied Atomic Collision Physics. H.S.W. Massey, E. W. McDaniel and B. Bederson, eds., Vol. 4, Ch. 3 (1983).Google Scholar
  7. I. Shimamura and K. Takayanagi, eds., Electron-Molecule Collisions, Plenum Press, New York (1984).Google Scholar
  8. 7.
    E. W. McDaniel. Atomic Collisions. John Wiley & Sons, New York (1989).Google Scholar
  9. 8.
    L. G. Christophorou, D. L. McCorkle, and A. A. Christodoulides. Ref. 2, Vol. 1, Chapt. 6.Google Scholar
  10. 9.
    L. G. Christophorou. Electron Attachment and Detachment Processes in Electronegative Gases. Plasma Physics 27: 237–281 (1987).Google Scholar
  11. 10.
    L. A. Pinnaduwage, L. G. Christophorou, and S. R. Hunter. Optically Enhanced Electron Attachment to Thiophenol. J. Chem. Phys. 90: 6275–6289 (1989).Google Scholar
  12. 11.
    L. G. Christophorou and K. Siomos. Ref. 2, Vol. 2, Chapt. 4.Google Scholar
  13. 12.
    L. G. Christophorou. Ref. 4, pp. 283–316.Google Scholar
  14. 13.
    S. R. Hunter, J. G. Carter, and L. G. Christophorou. Electron Attachment and Ionization Processes in CF4, C2F6, C3F8, and n-C4Fto. J. Chem. Phys. 86: 693–703 (1987).Google Scholar
  15. 14.
    S. R. Hunter, J. G. Carter, and L. G. Christophorou. Electron Transport Measurements in Methane Using an Improved Pulsed Townsend Technique. J. Appl. Phys. 60: 24–35 (1986).Google Scholar
  16. 15.
    S. E. Derenzo, T. S. Mast, H. Zaklad, and R. A. Muller. Electron Avalanche in Liquid Xenon. Phys. Rev. A 9: 2582–2591 (1974).Google Scholar
  17. 16.
    I. György and G. R. Freeman. Ionization and Electron Thermalization Distances in Isomeric Pentanes: Effects of Molecular Shape and Density. J. Chem. Phys. 86: 681–687 (1987).Google Scholar
  18. 17.
    R. A. Holroyd and D. F. Anderson. The Physics and Chemistry of Room-Temperature Liquid-Filled Ionization Chambers. Nucl. Instr. Meth. Phys. Res. A236: 294–299 (1985).Google Scholar
  19. 18.
    T. G. Ryan and G. R. Freeman. Electron Mobilities and Ranges in Methyl-Substituted Pentanes Through the Liquid and Critical Regions. J. Chem. Phys. 86: 5144–5150 (1978).Google Scholar
  20. 19.
    S.S.-S. Huang and G. R. Freeman. Effect of Density on the Total Ionization Yields in X-Irradiated Argon, Krypton, and Xenon. Can. J. Chem. 55: 1838–1845 (1977).Google Scholar
  21. 20.
    T. Takahashi, S. Konno, and T. Doke. The Average Energies, W, Required to Form an Ion Pair in Liquefied Rare Gases. J. Phys. C7: 230–240 (1974).Google Scholar
  22. 21.
    P. G. Fuochi and G. R. Freeman. Molecular Structure Effects on the Free-Ion Yields and Reaction Kinetics in the Radiolysis of the Methyl-Substituted Propanes and Liquid Argon: Electron and Ion Mobilities. J. Chem. Phys. 56: 2333–2341 (1972).Google Scholar
  23. 22.
    W. F. Schmidt and A. O. Allen. Free-Ion Yields in Sundry Irradiated Liquids. J. Chem. Phys. 52: 2345–2351 (1970).Google Scholar
  24. 23.
    S. Geer, R. A. Holroyd and F. Ptohos. Field Dependent Free Ion Yields of Room Temperature Tetramethyl Liquids and Their Mixtures. Nucl. Instr. Meth. Phys. Res. A287: 447–451 (1990).Google Scholar
  25. 24.
    R. C. Munoz, J. B. Cumming, and R. A. Holroyd. Ionization of Tetramethylsilane by Alpha Particles. Chem. Phys. Lett. 115: 477–480 (1985).Google Scholar
  26. 25.
    I. Lopes, H. Hilmert, and W. F. Schmidt. Ionization of Some Molecular Gases by 60Co-y-Radiation: W-Values. Radiat. Phys. Chem. 29: 93–95 (1987).Google Scholar
  27. 26.
    J.-P. Dodelet and G. R. Freeman. Mobilities and Ranges of Electrons in Liquids: Effect of Molecular Structure in C5–C12 Alkanes. Can. J. Chem. 50: 2667–2679 (1972).Google Scholar
  28. 27.
    B. S. Yakovlev and L. V. Lukin. In Photodissociation and Photoionization. K. P. Lawrey, ed., p. 99. John Wiley & Sons, New York (1985).Google Scholar
  29. 28.
    R. A. Holroyd and R. L. Russell. Solvent and Temperature Effects in the Photoionization of Tetramethyl-p-phenylenediamine. J. Phys. Chem. 78: 2128–2135 (1974).Google Scholar
  30. 29.
    R. Reininger, V. Saile, P. Laporte, and I. T. Steinberger. Photoconduction in Rare Gas Fluids Doped with Small Organic Molecules. Chem. Phys. 89: 473–479 (1984).Google Scholar
  31. 30.
    R. Reininger, V. Saile, G. L. Findley, P. Laporte, and I. T. Steinberger. In Photophysics and Photochemistry Above 6 eV, F. Lahmani, ed. Elsevier Science Publishers, Amsterdam, 253. U. Asaf and I. T. Steinberger, Photoconductivity and Electron Transport Parameters in Liquid and Solid Xenon. Phys Rev. B 10:4464–4468 (1974).Google Scholar
  32. 31.
    J. Casanovas, R. Grob, D. Delacroix, J. P. Guelfucci, and D. Blanc. Photoconductivity Studies in Some Nonpolar Liquids. J. Chem. Phys. 75: 4661–4668 (1981).Google Scholar
  33. 32.
    E.-H. Böttcher and W. F. Schmidt. Photoconductivity of Nonpolar Liquids Induced by Vacuum-Ultraviolet Light. J. Chem. Phys. 80: 1353–1359 (1984).Google Scholar
  34. 33.
    H. Faidas and L. G. Christophorou. Determination of the Ionization Threshold of Azulene in Hydrocarbon Liquids by Multiphoton Ionization. J. Chem. Phys. 88:8010–8011 (1988).Google Scholar
  35. Laser Multiphoton Ionization of Aromatic Molecules in Nonpolar Liquids. Radiat. Phys. Chem. 32: 433–438 (1988).Google Scholar
  36. 34.
    H. Faidas, L. G. Christophorou, P. G. Datskos, and D. L. McCorkle. The Ionization Threshold of N,N,N’,N’-Tetramethyl-p-phenylenediamine. J. Chem. Phys. 90: 6619–6626 (1989).Google Scholar
  37. 35.
    R. D. Levin and S. G. Lias. Ionization Potential and Appearance Potential Measurements 1971–1981. NSRDS-NBS-71, U.S. Department of Commerce, NBS, Washington, D.C. (1982).Google Scholar
  38. 36.
    A. O. Allen. Drift Mobilities and Conduction Band Energies of Excess Electrons in Dielectric Liquids. NSRDS-NBS 58, U.S. Department of Commerce, Washington, D.C. (1976).Google Scholar
  39. 37.
    R. A. Holroyd, S. Tames, and A. Kennedy. Effect of Temperature on Conduction Band Energies of Electrons in Nonpolar Liquids. J. Phys. Chem. 79: 2857–2861 (1975).Google Scholar
  40. 38.
    E.-H. Böttcher. Experimentelle Untersuchung der photoelektrischen Leitung reiner and mit aromatischen Molekülen dotierter organischer Flüssingkeiten. GmbH HMI-B406, Berlin (1984).Google Scholar
  41. 39.
    K. Buschick and W. F. Schmidt. Vacuum Ultraviolet Photoconductivity of 2,2,4,4-Tetramethylpentane and Bis (Trimethylsilyl) Ethane. IEEE Trans. Electr. Insul. 24: 353–356 (1989).Google Scholar
  42. 40.
    H. Faidas and L. G. Christophorou. Multiphoton Ionization of Fluoranthene in Tetramethylsilane. J. Chem. Phys. 86: 2505–2509 (1987).Google Scholar
  43. 41.
    I. Roberts and E. G. Wilson. The Intrinsic Photoconductivity of Liquid Xenon. J. Phys. C 6: 2169–2183 (1973).Google Scholar
  44. 42.
    R. A. Holroyd, J. M. Preses, and N. Zevos. Single-Photon Induced Conductivity of Solutes in Nonpolar Solvents. J. Chem. Phys. 79: 483–487 (1983).Google Scholar
  45. 43.
    B. Raz and J. Jortner. Energy of the Quasi-Free Electron State in Liquid and Solid Rare Gases. Chem. Phys. Lett. 4: 155–158 (1969).Google Scholar
  46. 44.
    M. Born. Volumen and Hydratationswärme der Ionen. Z. Phys. 1: 45–48 (1920).Google Scholar
  47. 45.
    I. Messing and J. Jortner. Adiabatic Polarization Energy in a Simple Dense Fluid. Chem. Phys. 24: 183–189 (1977).Google Scholar
  48. 46.
    B. E. Springett, J. Jorner, and M. H. Cohen. Stability Criterion for the Localization of an Excess Electron in a Nonpolar Fluid. J. Chem. Phys. 48: 2720–2731 (1968).Google Scholar
  49. 47.
    S. Noda, L. Kevan, and K. Fueki. Conduction State Energy of Excess Electrons in Condensed Media: Liquid Methane, Ethane, and Argon and Glassy Matrices. J. Phys. Chem. 79: 2866–2874 (1975).Google Scholar
  50. 48.
    Y. Yamaguchi, T. Nakajima, and M. Nishikawa. Conduction Band Energy in Dense Ethane Fluid. J. Chem. Phys. 71: 550–551 (1979).Google Scholar
  51. 49.
    U. Asaf and I. T. Steinberger. The Energies of Excess Electrons in Helium. Chem. Phys. Lett. 128: 91–94 (1986).Google Scholar
  52. R. Reininger, U. Asaf, I. T. Steinberger, and S. Basak, Relationship Between the Energy V0 of the Quasi-Free Electron and Its Mobility in Fluid Argon, Krypton, and Xenon. Phys. Rev. B 28: 4426–4432 (1983).Google Scholar
  53. U. Asaf, R. Reininger, and I. T. Steinberger. The Energy Vo of the Quasi-Free Electron in Gaseous, Liquid, and Solid Methane. Chem. Phys. Lett. 100: 363–366 (1983).Google Scholar
  54. J. T. Steinberger, in Ref.[4], p. 235.Google Scholar
  55. 50.
    U. Asaf, W. S. Felps, K. Pupnik, S. P. McGlynn, and G. Ascarelli. Density Effects of High-n Molecular Rydberg States: CH3I and C6H6 in H2 and Ar. J. Chem. Phys. 91: 5170–5174 (1989).Google Scholar
  56. 51.
    E. Fermi. Sopra Lo Spostamento per Pressione Delle Righe Elevate Delle Serie Spettrali. Nuovo Cimento 11: 157–166 (1934).Google Scholar
  57. 52.
    V. A. Alekseev and I. I. Sobel’man. A Spectroscopic Method for the Investigation of Elastic Scattering of Slow Electrons. Soy. Phys. JETP 22: 882–888 (1966).Google Scholar
  58. 53.
    L. Onsager. Initial Recombination of Ions. Phys. Rev. 54: 554–557 (1938).Google Scholar
  59. 54.
    H. Lu, F. H. Long, R. M. Bowman, and K. B. Eisenthal. Femptosecond Studies of Electron-Cation Geminate Recombination in Water. J. Phys. Chem. 93: 27–28 (1989).Google Scholar
  60. 55.
    C. Ferradini and J.-P. Jay-Gerin. Radiolysis of Liquids with High Static Dielectric Constant: An Estimate of the Total Ionization Yield, Electron Thermalization Distance, and Contribution of Heterogeneous Reactions. J. Chem. Phys. 89: 6719–6722 (1988).Google Scholar
  61. J.-P. Jay-Gerin and C. Ferradini. On the Variation of the Free-Ion Yield with the Static Dielectric Constant in the Radiolysis of Liquids. Radiat. Phys. Chem. 33: 251–253 (1989).Google Scholar
  62. 56.
    R. M. Bowman, H. Lu, and K. B. Eisenthal. Femptosecond Study of Geminate Electron-Hole Recombination in Neat Alkanes. J. Chem. Phys. 89: 606–608 (1988).Google Scholar
  63. 57.
    J. M. Warman, E. S. Sennhauser, and D. A. Armstrong. Three-Body Electron-Ion Recombination in Molecular Gases. J. Chem. Phys. 70: 995–999 (1979).Google Scholar
  64. E. S. Sennhauser, D. A. Armstrong, and J. M. Warman. The Temperature Dependence of Three-Body Electron Ion Recombination in Gaseous H2O, NH3, and CO2. Radiat. Phys. Chem. 15: 479–483 (1980).Google Scholar
  65. 58.
    Y. Nakamura, K. Shinsaka, and Y. Hatano. Electron Mobilities and Electron-Ion Recombination Rate Constants in Solid, Liquid, and Gaseous Methane. J. Chem. Phys. 78: 5820–5824 (1983).Google Scholar
  66. 59.
    N. Gee and G. R. Freeman. Density and Temperature Effects on Electron Mobility in Fluid Methane. Phys. Rev. A20: 1152–1161 (1979).Google Scholar
  67. 60.
    N. E. Cipollini, R. A. Holroyd and M. Nishikawa. Zero-Field Mobility of Excess Electrons in Dense Methane. J. Chem. Phys. 67: 4636–4639 (1977).Google Scholar
  68. 61.
    S. R. Hunter and L. G. Christophorou. Electron Attachment to the Perfluoroalkanes n-CNF2N+2(N = 1 to 6) Using High-Pressure Swarm Techniques. J. Chem. Phys. 80: 6150–6164 (1984).Google Scholar
  69. 62.
    L. G. Christophorou, P. G. Datskos, and J. G. Carter. (To be published.)Google Scholar
  70. 63.
    M. Hayashi. In Swarm Studies and Inelastic Electron-Molecule Collisions. L. C. Pitchford, B. V. McKoy, A. Chutjian, and S. Trajmar, eds. pp. 167–187. Springer-Verlag, New York (1987).Google Scholar
  71. 64.
    W. F. Schmidt. Electron Conduction Processes in Dielectric Liquids. IEEE Trans. Electra Insul. EI-19: 389–418 (1984).Google Scholar
  72. 65.
    L. G. Christophorou, S. R. Hunter, and J. G. Carter. Electron Attachment to SF6 in Gaseous Ar and Xe; Comparison to Results in Liquid Ar and Xe and Energy of Excess Electrons. Radiat. Phys. Chem. 34: 819–827 (1989).Google Scholar
  73. 66.
    E. Shibamura, T. Takahashi, S. Kubota, and T. Doke. Ratio of Diffusion Coefficient to Mobility for Electrons in Liquid Argon. Phys. Rev. A 20: 2547–2554 (1979).Google Scholar
  74. 67.
    S. Kubota, T. Takahashi, and J. Ruangen. Hot Electron Relaxation in Solid and Liquid Argon, Krypton and Xenon. J. Phys. Soc. Japan 51: 3274–3277 (1982).Google Scholar
  75. 68.
    S. Nakamura, Y. Sakai, and H. Tagashira. Effective Momentum Transfer Cross Section for Excess Electrons in Liquid Argon. Chem. Phys. Lett. 130: 551–554 (1986).Google Scholar
  76. 69.
    L. G. Christophorou. Mean Energy of Excess Electrons in Liquid Ar as a Function of E/N; Electron Attachment to N2O in Gaseous and Liquid Ar. Chem. Phys. Lett. 121: 408–411 (1985).Google Scholar
  77. 70.
    E. M. Gushchin, A. A. Kruglov, and I. M. Obodovskii. Electron Dynamics in Condensed Argon and Xenon. Soy. Phys. JETP 55: 650–655 (1982).Google Scholar
  78. 71.
    J. Lekner. Motion of Electrons in Liquid Argon. Phys. Rev. 158: 130–137 (1967).Google Scholar
  79. 72.
    G. Bakale and G. Beck. Field-Dependent Electron Attachment in Liquid Tetramethylsilane. J. Chem. Phys. 84: 5344–5350 (1986).Google Scholar
  80. 73.
    H. Faidas, L. G. Christophorou, D. L. McCorkle, and J. G. Carter. Electron Drift Velocities and Electron Mobilities in Fast Room Temperature Dielectric Liquids and Their Corresponding Vapors. Nucl. Instr. Meth. Phys. Res. A 294: 575–582 (1990).Google Scholar
  81. 74.
    L.G.H. Huxley and R. W. Crompton. The Diffusion and Drift of Electrons in Gases. WileyInterscience, New York (1974).Google Scholar
  82. 75.
    W. L. Morgan. A Bibliography of Electron Swarm Data 1978–1989. JILA Data Center. Report No. 33, NIST, Boulder, Colorado, July (1990).Google Scholar
  83. 76.
    L. C. Pitchford and A. V. Phelps. Comparative Calculations of Electron Swarm Properties in N2 at Moderate E/N Values. Phys. Rev. A 25: 540–554 (1982).Google Scholar
  84. 77.
    G. L. Braglia, L. Romano, and M. Diligenti. Comment on “Comparative Calculations of Electron Swarm Properties in N2 at Moderate E/N Values.” Phys. Rev. A 26: 3689–3694 (1982).Google Scholar
  85. 78.
    M. Yousfi, P. Ségur, and T. Vassiliadis. Solution of the Boltzmann Equation with Ionization and Attachment: Application to SF6. J. Phys. D 18: 359–375 (1985).Google Scholar
  86. 79.
    S. Yachi, Y. Kitamura, K. Kitamori, and H. Tagashira. A Multi-Term Boltzmann Equation Analysis of Electron Swarms in Gases. J. Phys. D 21: 914–921 (1988).Google Scholar
  87. 80.
    J. J. Lowke, A. V. Phelps, and B. W. Irwin. Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2-He Laser Mixtures. J. Appl. Phys. 44: 4664–4671 (1973).Google Scholar
  88. 81.
    B. R. Bulos and A. V. Phelps. Excitation of the 4.3 µm Bands of CO2 by Low-Energy Electrons. Phys. Rev. A 14: 615–629 (1976).Google Scholar
  89. 82.
    D. Rapp and P. Englander-Golden. Total Cross Sections for Ionization and Attachment in Gases by Electron Impact: I Positive Ionization. J. Chem. Phys. 43: 1464–1479 (1965).Google Scholar
  90. 83.
    S. R. Hunter and L. G. Christophorou. Ref. 2, Vol. 2, p. 202.Google Scholar
  91. 84.
    T. F. O’Malley. Electron Diffusion and the Einstein Relation in High-Density Gases. Phys. Lett. 95A: 32–34 (1983).Google Scholar
  92. 85.
    V. M. Atrazhev and I. T. Yakubov. The Electron Drift Velocity in Dense Gases. J. Phys. D 10: 2155–2163 (1977).Google Scholar
  93. Electron Mobility in Liquids and Dense Gases. High Temp. 18: 966–985 (1980).Google Scholar
  94. 86.
    G. L. Braglia and V. Dallacasa. Theory of the Density Dependence of Electron Drift Velocity in Gases. Phys. Rev. A 18:711–717(1978);Google Scholar
  95. Theory of Electron Mobility in Dense Gases, Phys. Rev. A 26: 902–914 (1982).Google Scholar
  96. 87.
    M. H. Cohen and J. Lekner. Theory of Hot Electrons in Gases, Liquids, and Solids. Phys. Rev. 158: 305–309 (1967).Google Scholar
  97. J. Lekner. Mobility Maxima in the Rare-Gas Liquids. Phys. Lett. A27: 341–348 (1968).Google Scholar
  98. S. Basak and M. H. Cohen. Deformation-Potential Theory for the Mobility of Excess Electrons in Liquid Argon. Phys. Rev. B 20: 3404–3414 (1979).Google Scholar
  99. H. T. Davis, L. D. Schmidt, and R. M. Minday. Kinetic Theory of Excess Electrons in Polyatomic Gases, Liquids, and Solids. Phys. Rev. A 3: 1027–1037 (1971).Google Scholar
  100. 88.
    T. F. O’Malley. Multiple Scattering Effect on Electron Mobilities in Dense Gases. J. Phys. B 13: 1491–1504 (1980).Google Scholar
  101. 89.
    L. G. Christophorou. Mobilities of Slow Electrons in Low-and High-Pressure Gases and Liquids. Intern. J. Radiat. Phys. Chem. 7: 205–221 (1975).Google Scholar
  102. 90.
    H. Lehning. Resonance Capture of Very Slow Electrons in CO2. Phys. Lett. 28A: 103–104 (1968).Google Scholar
  103. 91.
    Th. Aschwanden. In Gaseous Dielectrics III. L. G. Christophorou, ed., p. 32, Pergamon Press, New York (1982).Google Scholar
  104. 92.
    L. G. Christophorou, J. G. Carter, and D. V. Maxey. Electron Motion in High-Pressure Polar Gases: NH3. J. Chem. Phys. 76: 2653–2661 (1982).Google Scholar
  105. 93.
    P. Krebs and M. Heintze. Migration of Excess Electrons in High Density Supercritical Ammonia. J. Chem. Phys. 76: 5484–5492 (1982).Google Scholar
  106. P. Krebs. Localization of Excess Electrons in Dense Polar Vapors. J. Phys. Chem. 88: 3702–3709 (1984).Google Scholar
  107. 94.
    V. V. Dmitrenko, A. S. Romanyuk, S. I. Suchkov and Z. M. Uteshev. Electron Mobility in Dense Xenon Gas. Soy. Phys. Tech. Phys. 28: 1440–1444 (1983).Google Scholar
  108. 95.
    G. R. Freeman. In Electron and Ion Swarms, L. G. Christophorou, ed., p. 93, Pergamon Press, New York (1981).Google Scholar
  109. 96.
    A. G. Robertson. Drift Velocities of Low-Energy Electrons in Argon at 293 and 90 K. Aust. J. Phys. 30: 39–49 (1977).Google Scholar
  110. 97.
    S. R. Hunter, J. G. Carter, and L. G. Christophorou. Low-Energy Electron Drift and Scattering in Krypton and Xenon. Phys. Rev. A38: 5539–5551 (1988).Google Scholar
  111. 98.
    L. S. Miller, S. Howe, and W. E. Spear. Charge Transport in Solid and Liquid Ar, Kr, and Xe. Phys. Rev. 166: 871–878 (1968).Google Scholar
  112. 99.
    Y. Sakai, S. Nakamura, and H. Tagashira. Drift Velocity of Hot Electrons in Liquid Ar, Kr, and Xe. IEEE Trans. Electr. Insul. EI-20: 133–137 (1985).Google Scholar
  113. 100.
    L. G. Christophorou and D. L. McCorkle. Experimental Evidence for the Existence of a Ramsauer-Townsend Minimum in Liquid CH4 and Liquid Ar (Kr and Xe). Chem. Phys. Lett. 42: 533–539 (1976).Google Scholar
  114. 101.
    W. F. Schmidt. In Ref. 4, p. 273.Google Scholar
  115. 102.
    H. Faidas, L. G. Christophorou, and D. L. McCorkle. Electron Transport in Fast Dielectric Liquids at High Applied Electric Fields. Proceedings 10th Intern. Conf. on Conduction and Breakdown in Dielectric Liquids, Grenoble, France, September 10–14 (1990).Google Scholar
  116. Drift Velocities of Excess Electrons in 2,2,4,4-Tetramethylpentane and Tetramethylsilane: A Fast Drift Technique. Chem. Phys. Lett. 163: 495–498 (1989).Google Scholar
  117. 103.
    C. Brassard. Liquid Ionization Detectors. Nucl. Instr. Meth. 162: 29–47 (1979).Google Scholar
  118. J. Engler and H. Keim. A Liquid Ionization Chamber Using Tetramethylsilane. Nucl. Instr. Meth. Phys. Res. 223: 47–51 (1984).Google Scholar
  119. 104.
    M. G. Albrow, et al. Performance of a Uranium/letramethylpentane Electromagnetic Calorimeter. Nucl. Instr. Meth. A265: 303–318 (1988).Google Scholar
  120. 105.
    L. G. Christophorou and H. Faidas. Dielectric Liquids for Possible Use in Pulsed Power Switches. Appl. Phys. Lett. 55: 948–950 (1989).Google Scholar
  121. 106.
    J. E. Demuth, D. Schmeisser, and Ph. Avouris. Resonance Scattering of Electrons from N2, CO, 02, and H2 Adsorbed on a Silver Surface. Phys. Rev. Lett. 47: 1166–1169 (1981).Google Scholar
  122. L. Sanche and M. Michaud. Resonance-Enhanced Vibrational Excitation in Electron Scattering from 02 Multilayer Films. Phys. Rev. Lett. 47: 1008–1011 (1981).Google Scholar
  123. Vibrational Excitation Via Shape Resonances in Electron Scattering from N2 Multilayer Films. Chem. Phys. Lett. 84: 497–500 (1981).Google Scholar
  124. L. Sanche. Investigation of Ultra-Fast Events in Radiation Chemistry with Low-Energy Electrons. Radiat. Phys. Chem. 34: 15–33 (1989).Google Scholar
  125. Low-Energy Electron Scattering from Molecules on Surfaces. J. Phys. B 23: 1597–1624 (1990).Google Scholar
  126. 107.
    R. E. Goans and L. G. Christophorou. Attachment of Slow ( 1 eV) Electrons to 02 in Very High Pressures of Nitrogen, Ethylene, and Ethane. J. Chem. Phys. 60: 1036–1045 (1974).Google Scholar
  127. 108.
    D. L. McCorkle, L. G. Christophorou, and V. E. Anderson. Low-Energy (1 eV) Electron Attachment to Molecules at Very High Gas Densities: 02. J. Phys. B 5: 1211–1220 (1972).Google Scholar
  128. 109.
    L. G. Christophorou. Intermediate Phase Studies for Understanding Radiation Interaction in Condensed Media: The Electron Attachment Process. J. Phys. Chem. 76: 3730–3734 (1972).Google Scholar
  129. Electron Attachment to Molecules in Dense Gases (“Quasi-Liquids”). Chem. Rev. 76:409–423 (1976).Google Scholar
  130. 110.
    T. D. Murk and A. W. Castleman, Jr. In Advances in Atomic and Molecular Physics, D. R. Bates and B. Bederson, eds., 20:65–172. Academic Press, Orlando, Florida (1985).Google Scholar
  131. A. W. Castleman, Jr., and R. G. Keesee. Gas-Phase Clusters: Spanning the States of Matter. Science 241: 36–42 (1988).PubMedGoogle Scholar
  132. R. G. Keesee and A. W. Castleman, Jr. In Atomic and Molecular Clusters, E. R. Bernstein, ed., pp. 507–550. Elsevier Scientific Publishing Company, Amsterdam (1990).Google Scholar
  133. R. N. Compton and J. N. Bardsley. In Electron-Molecule Collisions, I. Shimamura and K. Takayanagi, eds., pp. 275–349. Plenum Press, New York (1984).Google Scholar
  134. 111.
    L. G. Christophorou. The Lifetimes of Metastable Negative Ions. Adv. Electron. Electron Phys. 46: 55–129 (1978).Google Scholar
  135. 112.
    H.S.W. Massey. Negative Ions. Cambridge University Press, Cambridge (1976).Google Scholar
  136. 113.
    B. M. Smirnov. Negative Ions. McGraw-Hill, New York (1982).Google Scholar
  137. 114.
    L. G. Christophorou and S. R. Hunter. Ref. 2, Vol. 2, Chapt. 5.Google Scholar
  138. 115.
    L. G. Christophorou, D. L. McCorkle, D. V. Maxey, and J. G. Carter. Fast Gas Mixtures for Gas-Filled Particle Detectors. Nucl. Instr. Meth. 163: 141–149 (1979).Google Scholar
  139. M. K. Kopp, K. H. Valentine, L. G. Christophorou, and J. G. Carter. New Gas Mixture Improves Performance of 3H Neutron Counters. NucL Instr. Meth. 201: 395–401 (1982).Google Scholar
  140. L. G. Christophorou, H. Faidas and D. L. McCorkle. In Nonequilibrium Effects in Ion and Electron Transport, J. W. Gallagher, D. F. Hudson, E. E. Kunhardt, and R. J. Van Brunt, eds., pp. 313–328, Plenum Press, New York (1990).Google Scholar
  141. 116.
    A. Zlatkis and C. F. Poole, eds. Electron Capture: Theory and Practice in Chromatography. Journal of Chromatography Library, Vol. 20. Elsevier Scientific Publishing Company, Amsterdam (1981).Google Scholar
  142. L. G. Christophorou, D. L. McCorkle, and I. Sauers. Tagging Materials for Detection of Explosives. Analytical Chimica Acta 135: 179–192 (1982).Google Scholar
  143. 117.
    L. G. Christophorou and D. W. Bouldin, eds. Gaseous Dielectrics V. Pergamon Press, New York (1987).Google Scholar
  144. L. G. Christophorou and M. O. Pace, eds., Gaseous Dielectrics IV, Pergamon Press, New York (1984).Google Scholar
  145. L. G. Christophorou and L. Pinnaduwage. Basic Physics of Gaseous Dielectrics. IEEE Trans. Electr. InsuL 25: 55–74 (1990).Google Scholar
  146. 118.
    A. Guenther, M. Kristiansen, and T. Martin, eds. Opening Switches. Plenum Press, New York (1987).Google Scholar
  147. L. G. Christophorou. Electron Collisions in Gas Switches. In Nonequilibrium Processes in Partially Ionized Gases, M. Capitelli and J. N. Bardsley, eds. Plenum Press, New York (1990).Google Scholar
  148. S. R. Hunter, J. G. Carter, and L. G. Christophorou. Electron Transport Studies of Gas Mixtures for Use in e-Beam Controlled Diffuse Discharge Switches. J. AppL Phys. 58:3001–3015 (1985).Google Scholar
  149. 119.
    G. E. Caledonia. A Survey of the Gas-Phase Negative Ion Kinetics of Inorganic Molecules. Electron Attachment Reactions. Chem. Rev. 75: 333–351 (1975).Google Scholar
  150. 120.
    L. G. Christophorou. Interactions of 02 with Slow Electrons. Radiat. Phys. Chem. 12: 19–34 (1978).Google Scholar
  151. 121.
    Y. Hatano and H. Shimamori. In Electron and Ion Swarms, L. G. Christophorou, ed., pp. 103–116. Pergamon Press, New York (1981).Google Scholar
  152. 122.
    H. Shimamori and Y. Hatano. Mechanism of Thermal Electron Attachment in 02-N2 Mixtures. Chem. Phys. 12: 439–445 (1976).Google Scholar
  153. H. Shimamori and R. W. Fessenden. Thermal Electron Attachment to Oxygen and Van der Waals Molecules Containing Oxygen. J. Chem. Phys. 74: 453–466 (1981).Google Scholar
  154. 123.
    S. R. Hunter, L. G. Christophorou, D. L. McCorkle, I. Sauers, H. W. Ellis, and D. R. James. Anomalous Electron Attachment Properties of Perfluoropropylene (1-C3F6) and Their Effect on the Breakdown Strength of This Gas. J. Phys. D 16: 573–580 (1982).Google Scholar
  155. 124.
    G. Bakale, U. Sowada, and W. F. Schmidt. Effect of an Electric Field on Electron Attachment to SF6, N2O, and 02 in Liquid Argon and Xenon. J. Phys. Chem. 80: 2556–2559 (1976).Google Scholar
  156. 125.
    G. Bakale and W. F. Schmidt. Effect of an Electric Field on Electron Attachment to SF6 in Liquid Ethane and Propane. Z. Naturforsch. 36a: 802–806 (1981).Google Scholar
  157. 126.
    S. R. Hunter and L. G. Christophorou. Basic Studies of Gases for Fast Switches. Oak Ridge National Laboratory Report ORNL/TM-10844, August (1988).Google Scholar
  158. 127.
    T. F. O’Malley. Calculation of Dissociative Attachment in Hot 02. Phys. Rev. 155: 59–63 (1967).Google Scholar
  159. J. N. Bardsley and J. M. Wadehra. Dissociative Attachment and Vibrational Excitation in Low-Energy Collisions of Electrons with H2 and D2. Phys. Rev. 20: 1398–1405 (1979).Google Scholar
  160. Dissociation Attachment in HC1, DCI, and F2. J. Chem. Phys. 78: 7227–7234 (1983).Google Scholar
  161. 128.
    S. M. Spyrou and L. G. Christophorou. Effect of Temperature on the Dissociative Electron Attachment to CCIF3 and C2F6. J. Chem. Phys. 82: 2620–2629 (1985).Google Scholar
  162. 129.
    E. Alge, N. G. Adams, and D. Smith. Rate Coefficients for the Attachment Reactions of Electrons with c-C7F14, CH3Br, CF3Br, CH2Br2, and CH3I Determined Between 200 and 600 K Using the FALP Technique. J. Phys. B 17: 3827–3833 (1984).Google Scholar
  163. 130.
    S. M. Spyrou and L. G. Christophorou. Effect of Temperature of the Dissociative and Nondissociative Electron Attachment to C3F8. J. Chem. Phys. 83: 2829–2835 (1985).Google Scholar
  164. P. G. Datskos and L. G. Christophorou. Variation with Temperature of the Electron Attachment to SO2F2. J. Chem. Phys. 90: 2626–2630 (1989).Google Scholar
  165. P. G. Datskos, L. G. Christophorou, and J. G. Carter. Temperature-Enhanced Electron Attachment to CH3C1. Chem. Phys. Lett. 168: 324–329 (1990).Google Scholar
  166. P. J. Chantry and C. L. Chen. Ionization and Temperature Dependent Attachment Cross Section Measurements in C3F8 and C2H3C1. J. Chem. Phys. 90: 2585–2592 (1989).Google Scholar
  167. 131.
    P. G. Datskos and L. G. Christophorou. Variation of Electron Attachment to n-C4F10 with Temperature. J. Chem. Phys. 86: 1982–1990 (1987).Google Scholar
  168. 132.
    S. M. Spyrou and L. G. Christophorou. Effect of Temperature on Nondissociative Electron Attachment to Perfluorobenzene. J. Chem. Phys. 82: 1048–1049 (1985).Google Scholar
  169. 133.
    A. A. Christodoulides, L. G. Christophorou, and D. L. McCorkle. Effect of Temperature on Low-Energy ( 1 eV) Electron Attachment to Perfluorocyclobutane (c-C4F8). Chem. Phys. Lett. 139: 350–356 (1987).Google Scholar
  170. 134.
    C. L. Chen and P. J. Chantry. Photon-Enhanced Dissociative Electron Attachment in SF6 and Its Isotopic Selectivity. J. Chem. Phys. 71: 3897–3907 (1979).Google Scholar
  171. I. M. Beterov and N. V. Fateyev. Laser Optogalvanic Effects Caused by Formation of Negative Ions. J. de Phys. (Paris), Colloq., C7: 447 (1983).Google Scholar
  172. M. W. McGeoch and R. E. Schlier. Dissociative Attachment in Optically Pumped Lithium Molecules. Phys. Rev. A 33: 1708–1717 (1986).PubMedGoogle Scholar
  173. 135.
    R. I. Hall and S. Trajmar. Scattering of 4.5 eV Electrons by Ground (X3 Eg) State and Metastable (a1 0g) Oxygen Molecules. J. Phys. B 8: L293 - L296 (1975).Google Scholar
  174. 136.
    P. D. Burrow. Dissociative Attachment to 02(a10g) State. J. Chem. Phys. 59:4922–4931 (1973).Google Scholar
  175. D. S. Belic and R. I. Hall. Dissociative Electron Attachment to Metastable Oxygen (alAg). J. Phys. B 14: 365–373 (1981).Google Scholar
  176. 137.
    L. G. Christophorou, S. R. Hunter, L. A. Pinnaduwage, J. G. Carter, A. A. Christodoulides, and S. M. Spyrou. Optically-Enhanced Electron Attachment. Phys. Rev. Leu. 58: 1316–1319 (1987).Google Scholar
  177. 138.
    L. A. Pinnaduwage, L. G. Christophorou, and A. P. Bitouni. Enhanced Electron Attachment to Superexcited States of Saturated Tertiary Amines. J. Chem. Phys. 95: 274–287 (1991).Google Scholar
  178. 139.
    R. S. Mock and E. P. Grimsrud. Optically-Enhanced Electron Capture by p-Benzoquinone and Its Methylated Derivatives. J. Phys. Chem. 94: 3550–3553 (1990).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Loucas G. Christophorou
    • 1
    • 2
  1. 1.Health and Safety Research DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of PhysicsThe University of TennesseeKnoxvilleUSA

Personalised recommendations