Radial Distribution of Dose

  • Robert Katz
  • Matesh N. Varma
Part of the Basic Life Sciences book series (BLSC, volume 58)


The radial distribution of dose about the path of a heavy ion, principally from delta rays, is one of the central contributions of atomic physics to the systematization of high LET radiation effects in condensed matter, whether the detection arises in chemical, physical, or biological systems. In addition to the radial distribution of dose, we require knowledge of the response of the system to X-rays or gamma-rays or to beams of energetic electrons such that the electron slowing-down spectra from these radiations can approximate the slowing-down spectra from delta rays even at different radial distances from the ion’s path. A combination of these data enables us to calculate the action cross sections for heavy ion bombardments in all detectors for which this information is available. These cross sections are indispensable for the evaluation of effects caused by high LET radiations. In this paper we focus attention principally on the calculation and measurement of the radial distribution of dose and on their limitations.


Radial Distribution Radial Distance Energy Deposition Nuclear Emulsion Radial Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Katz and J. J. Butts. On the Width of Heavy Ion Tracks in Emulsion. In Proc. of the 5th Int. Conf. on Nuclear Photography. CERN 65–4, Vol. 2, IX - 48 (1965).Google Scholar
  2. 2.
    R. Katz and J. J. Butts. Width of Ion and Monopole Tracks in Emulsion. Phys. Rev. 137: B198–B203 (1965).CrossRefGoogle Scholar
  3. 3.
    J. P. Lonchamp. Contribution a l’Étude Methodologique des Emulsions Photographiques Utilisées en Physique Nucleaire. Ann. de Phys. 10: 201–258 (1955).Google Scholar
  4. 4.
    P. G. Bizetti and M. Della Corte. On the Thinning Down of Tracks of Heavy Nuclei in Nuclear Emulsions. Nuovo Cimento 9: 317–333 (1959).Google Scholar
  5. 5.
    J. Orear, A. H. Rosenfeld, and R. A. Schluter. Energy Loss by Charged Particles, Chapter IIA in Nuclear Physics, a Course Given by Enrico Fermi, pp. 27–34. University of Chicago Press, Chicago (1949).Google Scholar
  6. 6.
    W. H. Barkas. Nuclear Research Emulsions 1. Academic Press, New York (1963).Google Scholar
  7. 7.
    J. J. Butts and R. Katz. Theory of RBE for Heavy Ion Bombardment of Dry Enzymes and Viruses. Radiat. Res. 30: 855–871 (1967).PubMedCrossRefGoogle Scholar
  8. 8.
    A. M. Kellerer and H. H. Rossi. The Theory of Dual Radiation Action. Curr. Topics Radiat. Res. Ql. 8: 85–158 (1972).Google Scholar
  9. 9.
    A. M. Kellerer and H. H. Rossi. A Generalized Formulation of Dual Radiation Action. Radiat. Res. 75: 471–488 (1978).CrossRefGoogle Scholar
  10. 10.
    E. J. Kobetich and R. Katz. Energy Deposition by Electron Beams and Delta Rays. Phys. Rev. 170: 391–396 (1968).CrossRefGoogle Scholar
  11. 11.
    E. J. Kobetich and R. Katz. Electron Energy Dissipation. Nucl. Instr. Meth. 71: 226–230 (1968).CrossRefGoogle Scholar
  12. 12.
    R. Katz and E. J. Kobetich. Response of Nuclear Emulsion to Electron Beams. Nucl. Instr. Meth. 79: 320–324 (1970).CrossRefGoogle Scholar
  13. 13.
    R. Katz and E. J. Kobetich. Particle Racks in Emulsion. Phys. Rev. 186: 344–351 (1969).CrossRefGoogle Scholar
  14. 14.
    C. F. Powell, P. H. Fowler, and D. H. Perkins. The Study of Elementary Particles by the Photographic Method. Pergamon Press, New York (1959).Google Scholar
  15. 15.
    E H. Fowler, R. A. Adams, V G. Cowen, and J. M. Kidd. The Charge Spectrum of Very Heavy Cosmic Ray Nuclei. Proc. Roy. Soc. A. 301: 39–45 (1967).CrossRefGoogle Scholar
  16. 16.
    R. Katz and F. E. Pinkerton. Response of Nuclear Emulsions to Ionizing Radiations. Nucl. Instr. Meth. 130: 105–119 (1975).CrossRefGoogle Scholar
  17. 17.
    R. Katz, A. S-E. Li, Y. L. Chang, R. L. Rosman, and E. V. Benton. Tracks of Argon Ions in Ilford K Series Nuclear Track Detectors. The Nucleus (Pakistan) 20: 17–20 (1983).Google Scholar
  18. 18.
    R. Katz, K. S. Loh, Luo Daling, and G. R. Huang. An Analytic Representation of the Radial Distribution of Dose from Energetic Heavy Ions in Water, Si, Nal, and SiO2. Radiat. Effects and Defects in Solids 114: 15–20 (1990).CrossRefGoogle Scholar
  19. 19.
    M. Jensen, L. Larsson, O. Mathiesen, and R. Rosander. Experimental and Theoretical Absorptance Profiles of Racks of Fast Heavy Ions in Nuclear Emulsion. Physica Scripta 13: 65–74 (1976).CrossRefGoogle Scholar
  20. 20.
    M. Jensen and O. Mathiesen. Measured and Calculated Absorptance of Tracks of Fast Heavy Ions in Ilford G.5 Nuclear Emulsion. Physica Scripta 13: 75–82 (1976).CrossRefGoogle Scholar
  21. 21.
    S. Behrnetz. Application of Track Formation Theory to Calibration of Photometric Measurements on Cosmic Ray Tracks in Nuclear Emulsion. Nucl. Instr. Meth. 133: 113–119 (1976).CrossRefGoogle Scholar
  22. 22.
    R. Katz. Photometric Measurements of Thin Tracks in Nuclear Emulsion. Nucl. Instr. Meth. 169: 257–259 (1979).CrossRefGoogle Scholar
  23. 23.
    J. W Baum. Comparison of Distance and Energy Related Restricted Energy Transfer to Heavy Particles with 0.25 to 1100 MeV/amu. Brookhaven National Laboratory (1967).Google Scholar
  24. 24.
    J. W. Baum, S. L. Stone, and A. V. Kuehner. Radial Distribution of Dose Along Heavy Ion Tracks, LET. In Proc. Symp. Microdosim., H. G. Ebert, ed., pp. 269–281. Ispra, Italy (1968).Google Scholar
  25. 25.
    J. W. Baum, M. N. Varma, C. L. Wingate, H. G. Paretzke, and A. V. Kuehner. Nanometer Dosimetry of Heavy Ion Tracks. In Proc. 4th Symp. Microdosim., J. Booz, H. G. Ebert, R. Eikel, and A. Waker, eds., 1:93–112. EUR 5122 d-e-f, Verbania Pallanza, Italy (1974).Google Scholar
  26. 26.
    M. N. Varma, J. W. Baum, and A. V. Kuehner. Energy Deposition by Heavy Ions in a “Tissue Equivalent” Gas. Radiat. Res. 62: 1–11 (1975).PubMedCrossRefGoogle Scholar
  27. 27.
    M. N. Varma, H. G. Paretzke, J. W. Baum, J. T. Lyman, and J. Howard. Dose as a Function of Radial Distance from a 930 MeV 4He Ion Beam. In Proc. 5th Symp. Microdosim., J. Booz, H. G. Ebert, and B.G.R. Smith, eds., 1:75–79. EUR 5452 d-e-f, Verbania Pallanza, Italy (1976).Google Scholar
  28. 28.
    M. N. Vanna, J. W. Baum, and A. V. Kuehner. Radial Dose, LET and W for 160 Ions in the N2 and Tissue Equivalent Gases. Radiat. Res. 70: 511–518 (1977).CrossRefGoogle Scholar
  29. 29.
    M. N. Varma and J. W. Baum. Energy Deposition in Nanometer Regions by 377 MeV/nucleon 20Ne Ions. Radiat. Res. 81: 355–363 (1980).CrossRefGoogle Scholar
  30. 30.
    M. N. Varma. Review of Radial Dose Measurement lèchnique and Data. Nucl. Tracks. Radiat. Meas. 16: 135–139 (1989).CrossRefGoogle Scholar
  31. 31.
    C. L. Wingate and J. W. Baum. Measured Radial Distribution of Dose and LET for Alpha and Proton Beams in Hydrogen and Tissue-Equivalent Gas. Radiat. Res. 65: 1–17 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    N. F. Metting. Measurement of Energy Deposition Near High Energy Heavy Ion Tracks. Master’s Thesis, University of Washington. Pacific Northwest Laboratory, Richland, Washington (1986).Google Scholar
  33. N. E Metting. A Comparison of Microscopic Dose with Average Dose Near High Energy Ions. Nucl. Instr. Meth. in Phys. Res. B24/25:1050–1053 (1987).Google Scholar
  34. 34.
    N. F Metting, H. H. Rossi, L. A. Braby, P. J. Kliauga, J. Howard, M. Zaider, W. Schimmerling, M. Wong, and M. Rapkin. Microdosimetry Near the Yajectory of High Energy Ions. Radiat. Res. 116: 183–195 (1988).PubMedCrossRefGoogle Scholar
  35. L. H. Tbburen, N. F. Metting, and L. A. Braby. Spatial Patterns of Ionization in Charged Particle Yacks. Nucl. Instr. Meth. in Phys. Res. B40/41:1275–1278 (1989).Google Scholar
  36. 36.
    L. H. Ibburen, L. A. Braby, N. F. Metting, G. Kraft, H. Schmidt-Bocking, R. Dorner, and R. Seip. Radial Distributions of Energy Deposited Along Charged Particle ‘Yacks. In 10th Symposium on Microdosimetry, Rome, May 1989 (1990).Google Scholar
  37. 37.
    T. Kanai and K. Kawachi. Radial Dose Distribution for 18.3 MeV/n Alpha Beams in Tissue Equivalent Gas. Radiat. Res. 112: 426–435 (1987).PubMedCrossRefGoogle Scholar
  38. 38.
    L. H. Ibburen, W. E. Wilson, and R. J. Popowich. Secondary Electron Emission from Ionization of Water Vapor by 0.3 to 2.0 MeV He+ and He2+ Ions. Radiat. Res. 82: 27–44 (1980).CrossRefGoogle Scholar
  39. 39.
    F. Hutchinson. The Interaction of Primary Cosmic Rays with Matter and Tissue. In Symposium on Medical and Biological Aspects of the Energies of Space, P. A. Campbell, ed., Columbia University Press, New York (1961).Google Scholar
  40. 40.
    J. Fain, M. Monnin, and M. Montret. Energy Density Deposited by a Heavy Ion Around Its Path. In Proc. 4th Symp. Microdosim. J. Booz, H. G. Ebert, R. Eikel, and A. Waker, eds., pp. 169–188. Verbania-Pallanza, Italy (1974).Google Scholar
  41. 41.
    J. Fain, M. Monnin, and M. Montret. Spatial Energy Distribution Around Heavy Ion Paths. Radiat. Res. 57: 379–389 (1974).CrossRefGoogle Scholar
  42. 42.
    A. Chatterjee, H. D. Maccabee, and C. A. Tobias. Radial Cut-Off LET and Radial Cut-Off Dose Calculations for Heavy Charged Particles in Water. Radiat. Res. 54: 479–494 (1973).PubMedCrossRefGoogle Scholar
  43. 43.
    A. Chatterjee and H. J. Schaefer. Microdosimetric Structure of Heavy Ion ‘Yacks in Tissue. Radiat. Environ. Biophys. 13: 215–227 (1976).PubMedCrossRefGoogle Scholar
  44. 44.
    J. W. Hansen and K. J. Olsen. Experimental and Calculated Response of a Radiochromic Dye Film Dosimeter to High-LET Radiations. Radiat. Res. 97: 1–15 (1984).CrossRefGoogle Scholar
  45. 45.
    C. Zhang, D. E. Dunn, and R. Katz. Radial Distribution of Dose and Cross Section for the Inactivation of Dry Enzymes and Viruses. Radiat. Prot. Dosim. 13: 215–218 (1985).Google Scholar
  46. 46.
    W. Brandt and R. H. Ritchie. Primary Processes in the Physical Stage. In Physical Mechanisms in Radiation Biology, R. D. Cooper and R. W. Wood, eds., pp. 20–46. U.S. Atomic Energy Commission CONF-721001 (1974).Google Scholar
  47. 47.
    H. G. Paretzke, G. Leuthold, G. Burger, and W. Jacobi. Approaches to Physical ‘Yack Structure Calculations. In Proc. 4th Symp. Microdosim., J. Booz, H. Ebert, R. Eickel, and A. Waker, eds., 1:75–79. EUR 5122 d-e-f, Verbania Pallanza, Italy (1976).Google Scholar
  48. 48.
    M. Zaider, D. J. Brenner, and W. E. Wilson. The Applications of ‘Yack Calculations to Radiobiology 1. Monte Carlo Simulation of Proton’ Racks. Radiat. Res. 95: 231–242 (1983).CrossRefGoogle Scholar
  49. 49.
    R. H. Ritchie, R. N. Hamm, J. E. Minter, H. A. Wright, J. C. Ashley, and G. J. Basbas. Physical Aspects of Charged Particle ‘Yack Structure. Nucl. Tracks Radiat. Meas. 16: 141–155 (1989).CrossRefGoogle Scholar
  50. 50.
    M.P.R. Waligorzki, R. N. Hamm, and R. Katz. Radial Distribution of Dose Around the Path of a Heavy Ion in Liquid Water. Nucl. Tracks Radiat. Meas. 11: 309–319 (1986).CrossRefGoogle Scholar
  51. 51.
    N. M. Varma and M. Zaider. The Radial Dose Distribution As a Microdosimetric Tbol. Radiat. Prot. Dosim. 31: 155–160 (1990).Google Scholar
  52. 52.
    H. G. Menzel and J. Booz. Measurement of Radial Energy Deposition Spectra for Protons and Deuterons in Tissue Equivalent Gas. In 5th Symposium on Microdosimetry, J. Booz, H. G. Ebert, B.G.R. Smith, eds. Commission of the European Communities, Luxembourg (1976).Google Scholar
  53. 53.
    M. N. Varma, J. W. Baum, and A. V. Kuehner. Stopping Power and Radial Dose Distribution for 42 MeV Bromine Ions. Phys. Med. Biol. 25: 651–656 (1980).PubMedCrossRefGoogle Scholar
  54. 54.
    M. E. Rudd. User Friendly Model for the Energy Distribution of Electrons from Proton or Electron Collisions. Nucl. Tracks Radiat. Meas. 16: 213–218 (1989).CrossRefGoogle Scholar
  55. 55.
    R. Katz and Luo Dating. Response of NaI(T1) and TLD(100) to Energetic Heavy Ions. 9th Int. Conf. on Solid State Dosimetry,Vienna 1989 (in press).Google Scholar
  56. 56.
    R. Katz, E. D. Dunn, and G. L. Sinclair. Thindown in Radiobiology. Radiat. Prot. Dosimetry 13: 281–284 (1985).Google Scholar
  57. 57.
    R. Katz. Cross Section. Appl. Radiat. Isot. 41: 563–567 (1990).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Robert Katz
    • 1
  • Matesh N. Varma
    • 2
  1. 1.University of NebraskaLincolnUSA
  2. 2.U.S. Department of EnergyUSA

Personalised recommendations