Charged-Particle Transport in the Condensed Phase

  • Marco Zaider
Part of the Basic Life Sciences book series (BLSC, volume 58)


Traditionally, studies of the biological effects of ionizing radiation have rested on the triumvirate: (gas-phase) radiation physics, biophysical modeling, and radiation biology. Two technical developments, the advent of supercomputing as a routine tool in quantum solid-state material science and molecular dynamics on the one hand, and molecular biology on the other hand, have created—perhaps for the first time—the possibility of directly linking a more realistic description of the radiation field to observable events at biomolecular level. It also becomes increasingly clear that the identification of specific molecular targets imposes a challenge to the radiation physics community to be equally specific in treating the energy-deposition stage of radiation action. In this paper: a) I review—and exemplify with results from our own work—the current status in Monte Carlo simulation of gas-phase material (particle transport and stochastic chemistry); b) examine the link between these essentially geometric representations of the track and the concept of “spatial distribution of energy deposition,” a staple in radiation modeling; c) advocate an effort towards developing conceptually and calculationally, the field of solid-state microdosimetry; and d) describe methods based on semi-empirical Hamiltonians or quasi-particle techniques for obtaining the frequency-dependent and wave-vector-dependent dielectric response function for biomolecular crystalline systems, which are the main ingredients for describing charged-particle transport.


Energy Deposition Linear Energy Transfer Energy Loss Function Dielectric Response Function Stochastic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. J. Berger. Monte Carlo Calculation of the Penetration and Diffusion of Fast Charged Particles. Meth. in Comp. Phys. 1:135–215 (1963).Google Scholar
  2. 2.
    H. G. Paretzke, G. Leuthold, G. Burger, and W. Jacobi. Approaches to Physical Track Structure Calculation. In: 4th Symposium on Microdosimetry, CEC, Luxembourg (1974).Google Scholar
  3. 3.
    R. N. Hamm, J. E. ginner, H. A. Wright, and R. H. Ritchie. Calculated Distance Distributions of Energy Transfer Events in Irradiated Liquid Water. In: 7th Symposium on Microdosimetry, Oxford, pp. 717–726, CEC, Harwood (1981).Google Scholar
  4. 4.
    M. Zaider, D. J. Brenner, and W. E. Wilson. The Application of Track Structure Calculations to Radiobiology. I. Monte Carlo Simulation of Proton Tracks. Radiat. Res 95: 231–247 (1983).CrossRefGoogle Scholar
  5. 5.
    H. Kahn. Applications of Monte Carlo. The Rand Corporation AECU-3259 (1956).Google Scholar
  6. 6.
    G. Seng. Das System (e-H 2 0) Differentielle Streuexperimente bei KleinsteEnergien, Thesis Kaiserlautern University (1975).Google Scholar
  7. 7.
    E. Bruche. Wirkungsquerschnitt und Molekelblau in der Pseudoedelgasreihe: Ne HF-H20–NH3-CH4. Ann. Phys 1: 93–134 (1929).CrossRefGoogle Scholar
  8. 8.
    J. P. Bromberg. Measurement of Absolute Collision Cross Sections of Electrons Elastically Scattered by Gases. In The Physics of Electronic and Atomic Collisions, pp. 98–111, Univ. of Washington Press, Seattle (1975).Google Scholar
  9. 9.
    H. Nishimura. Elastic Scattering Cross Sections of H2O by Low-Energy Electrons. In Electronic and Atomic Collisions, Vol. II, p. 314, Society for Atomic Collision Research, Kyoto (1979).Google Scholar
  10. 10.
    T D. Märk and F Egger. Cross Section for Single Ionization of H2O and D20 by Electron Impact from Threshold Up to 170 eV. Int. J. Mass Spectrom. Ion Phys 20: 89–99 (1976).CrossRefGoogle Scholar
  11. 11.
    J. Schutten, F J. de Heer, H. R. Moustafa, A.J.H. Boerboom, and J. Kistemaker. Gross and Partial Ionization Cross Sections for Electrons on Water Vapor in the Energy Range 0.1–20 keV. J. Chem. Phys 44: 3924–3928 (1966).CrossRefGoogle Scholar
  12. 12.
    S. Trajmar, W. Williams, and A. Kuppermann. Electron Impact Excitation on H20. J. Chem. Phys 58: 2521–2531 (1973).CrossRefGoogle Scholar
  13. 13.
    W. Hilgner, J. Kessler, and E. Steeb. Zur Spinpolarisation Langsamer Elektronen nach der Streuung an HoIekulen. Z. Physik 221: 324–332 (1969).CrossRefGoogle Scholar
  14. 14.
    H. S. Porter and F. V. Jump. Analytic Tbtal and Angular Elastic Electron Impact Cross Sections for Planetary Atmospheres. Computer Science Corp. Report, CSCIrM-78/6017 (1978).Google Scholar
  15. 15.
    D. J. Brenner and M. Zaider. A Computationally Convenient Parameterization of Experimental Angular Distributions of Low Energy Electrons Elastically Scattered off Water Vapor. Phys. Med. Biot 29: 23–47 (1984).Google Scholar
  16. 16.
    L. H. Tbburen and W E. Wilson. Energy and Angular Distributions of Electrons Ejected from Water Vapor by 0.3–1.5 MeV Protons. J. Chem. Phys 66: 5202–5213 (1977).CrossRefGoogle Scholar
  17. 17.
    M. Zaider and D. J. Brenner. On the Stochastic Treatment of Fast Chemical Reactions. Radiat. Res 100: 245–256 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    I. G. Draganic and Z. D. Draganic. The Radiation Chemistry of Water. Academic Press, New York (1971).Google Scholar
  19. 19.
    P. Clifford, N.J.B. Green, and M. J. Pilling. Stochastic Model Based on Pair Distribution Functions for Reactions in a Radiation-Induced Spur Containing One Type of Radical. J. Phys. Chem 86: 1318–1321 (1982).CrossRefGoogle Scholar
  20. 20.
    P. Clifford, N.J.B. Green, and M. J. Pilling. Monte Carlo Simulation of Diffusion and Reaction in Radiation-Induced Spurs. Comparison with Analytic Models. J. Phys. Chem 86: 1322–1327 (1982).CrossRefGoogle Scholar
  21. 21.
    S. Chandrasekhar. Stochastic Processes in Physics and Astronomy. Rev. Mod. Phys 15: 1–88 (1943).CrossRefGoogle Scholar
  22. 22.
    P. Debye. Reaction Rates in Ionic Solutions. Trans. Electrochem. Soc 82: 265–272 (1942).CrossRefGoogle Scholar
  23. 23.
    D. R. Short, C. N. Trumbore, and J. H. Olson. Extension of a Spur Overlap Model for the Radiolysis of Water to Include High Linear Energy Regions. J. Phys. Chem 85: 2328–2335 (1981).CrossRefGoogle Scholar
  24. 24.
    C. D. Jonah, M. S. Matheson, J. R. Miller, and E. J. Hart. Yield and Decay of the Hydrated Electron from 100 ps to 3 ns. J. Phys. Chem 80: 1267–1270 (1976).CrossRefGoogle Scholar
  25. 25.
    T. Sumiyoshi and M. Katayama. The Yield of Hydrated Electrons at 30 picoseconds. Chem. Lett 12: 1888–1890 (1982).Google Scholar
  26. 26.
    J. Bednar. Rydberg Enhancement of Tbtal Ionization in Liquids Irradiated by Ionizing Radiation. II. Liquid Water Radiochem. Radioanal. Lett 45: 407–412 (1980).Google Scholar
  27. 27.
    ICRU. Microdosimetry, Report 36. International Commission on Radiation Units and Measurements, Washington, DC (1983).Google Scholar
  28. 28.
    A. M. Kellerer. Concepts of Geometrical Probability Relevant to Microdosimetry and Dosimetry. Proceedings of the 7th Symposium on Microdosimetry, eds. J. Booz, H. G. Ebert, and H. D. Hartfield. Oxford/UK, pp. 1049–1062 (1980).Google Scholar
  29. 29.
    M. Zaider and D. J. Brenner. The Application of Track Calculations to Radiobiology. III. Analysis of the Molecular Beam Experiment Results. Radiat. Res 100: 213–221 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    A. M. Kellercr and H. H. Rossi. The Theory of Dual Radiation Action. Curs Top. Radiat. Res 0. 8: 85–158 (1972).Google Scholar
  31. 31.
    A. M. Kellerer and H. H. Rossi. A Generalized Formulation of Dual Radiation Action. Radiat. Res 75: 471–488 (1978).CrossRefGoogle Scholar
  32. 32.
    D. Pines and P. Nozieres. The Theory of Quantum Liquids. W. R. Benjamin, New York (1966).Google Scholar
  33. 33.
    R. W. Godby, M. Schluter, and L. J. Sham. Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity on Addition of an Electron. Phys. Rev. Lett 56: 2415–2418 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    R. W. Godby, M. Schluter, and L. J. Sham. Trends in Self-Energy Operators and Their Corresponding Exchange-Correlation Potentials. Phys. Rev B36: 6497–6500 (1987).CrossRefGoogle Scholar
  35. 35.
    R. V. Godby, M. Schluter, and L. Sham, Self-Energy Operators and Exchange Potentials in Semiconductors. Phys. Rev B37: 10159–10175 (1988).CrossRefGoogle Scholar
  36. 36.
    M. S. Hybertsen and S. G. Louie. Electron Correlation and the Band Gap in Ionic Crystals. Phys. Rev B32: 7005–7008 (1985).CrossRefGoogle Scholar
  37. 37.
    M. S. Hybertsen and S. G. Louie. Electron Correlation in Semiconductors and Insulators: Band Gaps and Quasi Particle Energy. Phys. Rev B34: 5390–5413 (1986).CrossRefGoogle Scholar
  38. 38.
    M. Zaider, J. L. Fry, and D. E. Orr. A Semi-Empirical Tight Binding Calculation of the Dielectric Response Function of Water. Nucl. Tracks Radiat. Meas 16: 159–167 (1989).CrossRefGoogle Scholar
  39. 39.
    M. Zaider, J. L. Fry, and D. E. Orr. Calculational Aspects of the Assessment of Dielectric Response Function and Energy Loss in Biomaterials. Int. J. Supercomp. Appl (in press, 1990).Google Scholar
  40. 40.
    M. Zaider, J. L. Fry, and D. E. Orr. Integral Methods in the Quasi Particle Theory of Electronic Structure. In Proc. Int. Conf. on Integral Meth. Science and Eng. (in press, 1990).Google Scholar
  41. 41.
    N. Wiser. Dielectric Constant with Local Field Effects Included. Phys. Rev 129: 62–69 (1963).CrossRefGoogle Scholar
  42. 42.
    L. C. Snyder and H. Basch. Molecular Wave Functions and Properties: Tabulated from SCF Calculations in a Gaussian Basis Set. John Wiley, Chichester (1972).Google Scholar
  43. 43.
    J. L. Fry and P. C. Pattnaik. Analytic Approximation Methods of Computing Multi-Dimensional Principal Value Integrals. In Proc. Int. Conf. Integral Meth. Sci. Eng. F. R. Payne, C. C. Cordureanu, A. Haji-Sheikh, and T. Huang, eds. pp. 27–36, Hemisphere, Washington (1986).Google Scholar
  44. 44.
    J. Daniels. Bestimmung der Optischen Konstanten von Eis aus Energie-Verlustmessungen von Schnellen Electronen. Optics Comm. 3: 240–243 (1971).CrossRefGoogle Scholar
  45. 45.
    K. Kobayashi. Optical Spectra and Electronic Structure of Ice. J. Phys. Chem 87: 4317–4321 (1983).CrossRefGoogle Scholar
  46. 46.
    A. L. Fetter and J. D. Valecka. Quantum Theory of Many-Particle Systems. McGraw-Hill Book Co., New York (1971).Google Scholar
  47. 47.
    J. C. Inkson. Many-Body Theory of Solids. An Introduction. Plenum Press, New York and London (1986).Google Scholar
  48. 48.
    L. Hedin. New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem. Phys. Rev 139A: 796–823 (1965).CrossRefGoogle Scholar
  49. 49.
    L. Hedin and S. Lundqvist. Effects of Electron-Electron and Electron-phonon Interaction on the One-Electron States of Solids. In: Solid State Physics 23:1–181 (1969).CrossRefGoogle Scholar
  50. 50.
    C. Pisani, R. Dovesi, and C. Roetti. Hartree-Fock Ab Initio Treatment of Crystalline Systems. Lecture Notes in Chemistry 48: 1–193 (1988).CrossRefGoogle Scholar
  51. 51.
    C. R. Fincher, C. E. Chen, A. J. Heeger, A. G. MacDiarmid, and J. B. Hastings. Electronic Structure of Polyacetylene: Optical and Infrared Studies of Undoped Semiconducting (CH)x and Heavily Metallic (CH)x. Phys. Rev B20: 1589–1602 (1982).Google Scholar
  52. 52.
    J. Fink and G. Leising. Momentum-Dependent Dielectric Functions of Oriented TransPolyacetylene. Phys. Rev 34B: 5320–5328 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Marco Zaider
    • 1
  1. 1.Center for Radiological ResearchCollege of Physicians & Surgeons of Columbia UniversityNew YorkUSA

Personalised recommendations