Radiation Interactions and Energy Transport in the Condensed Phase

  • R. H. Ritchie
  • R. N. Hamm
  • J. E. Turner
  • H. A. Wright
  • W. E. Bolch
Part of the Basic Life Sciences book series (BLSC, volume 58)


We review the state of knowledge about inelastic interactions of swift charged particles with condensed matter. Emphasis is placed on the properties of the dielectric response function and its representation for biologically interesting materials. Progress toward the goal of modeling electron transport and track structure in these materials is described.


Liquid Water Dielectric Function Collective Mode Electron Energy Loss Spectroscopy Exchange Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Brandt and R. H. Ritchie. Initial Interaction Mechanisms in the Physical Stage. In Physical Mechanisms in Radiation Biology, Proceedings of a conference held at Airlie, Virginia, 11–14 October 1972. U.S. Atomic Energy Commission, ‘Ièchnical Information Center, Oak Ridge, Tennessee (1974).Google Scholar
  2. 2.
    J. B. Pendry. Low Energy Electron Difraction: The Theory and its Application to Determination of Surface Structure, Academic Press, New York (1974).Google Scholar
  3. 3.
    J. B. Pendry. Theory of Photoemission, Surf. Sci. 57: 679–705 (1976).CrossRefGoogle Scholar
  4. See also J. B. Pendry and E. Castano, Electronic Properties of Disordered Materials: A Symmetric Group Approach, J. Phys. C21: 4333 (1988).Google Scholar
  5. 4.
    M. J. Berger. Some Newfansport Calculations of the Deposition of Energy in Biological Materials by Low-Energy Electrons. Fourth Symposium on Microdosimeny (J. Booz, et al. Eds.), CEC, EUR 5122 d-e-f:695–715 (1974).Google Scholar
  6. 5.
    H. G. Paretzke. Comparison of ‘Yack Structure Calculations with Experimental Results. Fourth Symposium on Microdosimetry (J. Booz, et al. Eds.), CEC, EUR 5122 d-e-f:695–715, pp. 141–168 (1974).Google Scholar
  7. 6.
    M. rIbrrisol, J.,P. Patau, and T. Eudalo. Application a la Microdosimetrie et a la Radiobiologie de la Simulation du’Yansport des Electrons de Basse Energie dans L’eau a L’etat Liquide. In Sixth Symposium on Microdosimetry, Eds. J. Booz and H. G. Ebert, CEC, EUR 6064:169–176 (1978).Google Scholar
  8. 7.
    R. N. Hamm, H. A. Wright, R. H. Ritchie, J. E. ‘Rimer, and T P. ‘Rimer. Monte Carlo Calculation of’Yansport of Electrons Through Liquid Water. Fifth Symposium on Microdosimetry, (Eds. J. Booz, H. G. Ebert, and B.G.R. Smith, CEC, EUR 5254 d-e-f:1037–1053, (1976).Google Scholar
  9. 8.
    R. H. Ritchie, R. N. Hamm, J. E. marner, and H. A. Wright. The Interaction of Swift Electrons with Liquid Water. Sixth Symposium on Microdosimetry, Eds. J. Booz and H. G. Ebert, CEC, EUR 6064:345–354 (1978).Google Scholar
  10. 9.
    M. Zaider, D. J. Brenner, and W. E. Wilson. The Applications of ‘Yack Calculations to Radiobiology. Radiat. Res. 95: 231–247 (1983).CrossRefGoogle Scholar
  11. 10.
    W. R. Holley, A. Chatterjee, and J. L. Magee. Production of DNA Strand Breaks by Direct Effects of Heavy Charged Particles. Radiat. Res., 121: 161–168 (1990).PubMedCrossRefGoogle Scholar
  12. 11.
    E. D. Palik. Handbook of Optical Constants of Solids. Academic Press, New York (1985).Google Scholar
  13. 12.
    M. W. Williams, E. T. Arakawa, and T Inagaki. Optical and Dielectric Properties of Materials Relevant to Biological Research. In Handbook of Synchrotron Radiation, Vol. 4, Eds. E. Rubenstein, S. Evashi, and M. Koch. Elsevier, Amsterdam (1990).Google Scholar
  14. 13.
    E. Fermi. Über die Theorie des Stosses Zwischen Atomen und Elektrisch Geladen en’bilchen. Z. far Physik, 29: 315–327 (1924).CrossRefGoogle Scholar
  15. 14.
    E. Fermi. The Ionization Loss of Energy in Gases and Condensed Materials. Phys. Rev. 57: 485–493 (1940).CrossRefGoogle Scholar
  16. 15.
    M. E. Gertsenshtein. Zhur. Eksptl. Teoret. Fiz. 22: 303–315 (1952).Google Scholar
  17. M. E. Gertsenshtein. Zhur. Eksptl. Teoret. Fis. 23: 678–688 (1952).Google Scholar
  18. A. T Akhiezer and A. G. Sitenko. Zhur. Eksptl. Teoret. Fiz., 23: 161–185 (1952).Google Scholar
  19. J. Neufeld and R. H. Ritchie. Passage of Charged Particles Through Plasma. Phys. Rev. 98: 1632–1642 (1955).CrossRefGoogle Scholar
  20. 16.
    J. Lindhard. On the Properties of Gas of Charged Particles. Mat.-Fys. Medd., Kgl. Danske. Videnskab. Sels. 28, No. 8 (1954).Google Scholar
  21. 17.
    J. Hubbard. The Description of Collective Motions in Terms of Many-Body Perturbation Theory: II The Correlation Energy of a Free-Electron Gas. Proc. Roy. Soc. (Lond) A 243: 336–352 (1957).CrossRefGoogle Scholar
  22. 18.
    L. Rosenfeld. Theory of Electrons, Chapter V. Dover, New York (1965) for the classical form. F. Seitz. The Modern Theory of Solids, Chapter 17, McGraw-Hill, New York (1940).Google Scholar
  23. 19.
    A. Bohr. Atomic Interaction in Penetration Phenomena. Mat.-Fys. Medd., Kgl. Danske. Vidensk Sels. 24, No. 19 (1948).Google Scholar
  24. A. W. Blackstock, R. H. Ritchie, and R. D. Birkhoff. Mean Free Path for Discrete Electron Energy Losses in Metallic Foils. Phys. Rev. 100: 1078 (1955).CrossRefGoogle Scholar
  25. 20.
    M. W. Williams, R. N. Hamm, E. T Arakawa, E. T. Painter, and R. D. Birkhoff. Collective Electron Effects in Molecular Liquids. Int. J. Radiat. Phys. Chem. 7: 95–108 (1975).CrossRefGoogle Scholar
  26. 21.
    U. Fano. Normal Modes of a Lattice of Oscillators with Many Resonances and Dipolar Coupling. Phys. Rev. 118: 451–455 (1960).CrossRefGoogle Scholar
  27. 22.
    H. Ehrenreich and H. R. Philipp. Optical Properties of Semiconductors in the Ultra-Violet. In Proc. Int. Conf. Phys. Semiconductors,Ed., A. C. Strickland, pp. 367–374Google Scholar
  28. H. Ehrenreich and H. R. Philipp. Bartholomew Press, Dorking, UK pp. 367–374 (1962).Google Scholar
  29. 23.
    M. Zaider, J. L. Fry, and D. E. Orr. Towards an ab initio Evaluation of the Wave Vector and Frequency Dependent Dielectric Function of Crystalline Water. Radiat. Prot. Dosim. 31: 23–28 (1990).Google Scholar
  30. 24.
    J. Daniels, C. V. Festenburg, H. Racther, and K. Zeppenfield. Optical Constants of Solids by Electron Spectroscopy. Springer Tracts Mod. Phys. 54: 77–135 (1970).CrossRefGoogle Scholar
  31. 25.
    See E. T. Arakawa, L. C. Emerson, S. I. Juan, J. C. Ashley, and M. W Williams. The Optical Properties of Adenine from 1.8 to 80 eV Photochemistry and Photobiology 44:349 (1986) and the references given therein.CrossRefGoogle Scholar
  32. 26.
    J. M. Heller, Jr., R. N. Hamm, R. D. Birkhoff, and L. R. Painter. Collective Oscillation in Liquid Water. J. Chem. Phys. 60: 3483–3486 (1974).CrossRefGoogle Scholar
  33. 27.
    R. H. Ritchie and A. Howie. Electron Excitation and the Optical Potential in Electron Microscopy. Phil. Mag. 36: 463–481 (1977).CrossRefGoogle Scholar
  34. 28.
    J. C. Ashley. Stopping Power of Liquid Water for Low-Energy Electrons. Radiat. Res. 89: 25–31 (1982).CrossRefGoogle Scholar
  35. J. C. Ashley. Interaction of Low-Energy Electrons with Condensed Matter: Stopping Powers and Inelastic Mean Free Paths from Optical Data. J. Electron Spectr. Rel. Phenom. 46: 199–214 (1988).CrossRefGoogle Scholar
  36. 29.
    D. R. Penn. Electron Mean-free-path Calculations Using a Model Dielectric Function, Phys. Rev.B. 35: 482–486 (1987).CrossRefGoogle Scholar
  37. 30.
    R. M. Nieminen. Stopping Power for Low-Energy Electrons, Scanning Microsc. 2: 1917–1926 (1988).Google Scholar
  38. O. H. Crawford and C. W Nestor, Jr. Position Dependent Stopping Power for Channeled Ions. Phys. Rev. A28: 1260–1266 (1983).CrossRefGoogle Scholar
  39. 31.
    S. Tougaard. Background Removal in X-ray Photoelectron Spectroscopy: Relative Importance of Intrinsic and Extrinsic Processes. Phys. Rev. B34: 6779–6783 (1986).CrossRefGoogle Scholar
  40. 32.
    P. Nozieres and D. Pines. A Dielectric Formulation of the Many-Body Problem: Application to the Free Electron Gas. Novo Cimento 9: 470 (1958).CrossRefGoogle Scholar
  41. 33.
    H. A. Bethe. Zur Theorie des Durchgangs Schneller Korpuskularstrahlen durch Materie, Ann. Physik 5: 325–400 (1930).CrossRefGoogle Scholar
  42. 34.
    G. Placzek. The Scattering of Neutrons by Systems of Heavy Nuclei. Phys. Rev. 86: 377–388 (1952).CrossRefGoogle Scholar
  43. G. Placzek. The Scattering of Neutrons by Systems of Heavy Nuclei. Phys. Rev. 94:1801 (1954) (E).CrossRefGoogle Scholar
  44. 35.
    U. Fano and J. E. Turner. Contribution to the Theory of Shell Corrections. In NAS-NCR Nuclear Science Series, Report 39, Committee on Nuclear Science, Publication 1133, pp. 49–67 (1964).Google Scholar
  45. M. Inokuti, Inelastic Collisions of Fast Charged Particles with Atoms and Molecules - The Bethe Theory Revisited, Rev. Mod. Phys. 43:297–347 (1971);.CrossRefGoogle Scholar
  46. M. Inokuti, Inelastic Collisions of Fast Charged Particles with Atoms and Molecules - The Bethe Theory Revisited, Rev. Mod. Phys. 50: 23–35 (1978).CrossRefGoogle Scholar
  47. 36.
    D. Pines. Plasma Oscillations of Electron Gases. Physica 26: S103–123 (1960).CrossRefGoogle Scholar
  48. 37.
    M. A. Kumakhov and E E Komarov. Energy Loss and Ion Ranges in Solids,pp. 150–159. Gordon and Breach, New York (1981) and the references therein.Google Scholar
  49. 38.
    O. H. Crawford and C. W. Nestor, Jr. Position-Dependent Stopping Power for Channeled Ions. Phys. Rev. A 28: 1260–1266 (1983).CrossRefGoogle Scholar
  50. 39.
    D. L. Johnson. Local Field Effects and the Dielectric Response Function of Insulators: A Model. Phys. Rev. B 9: 4475–4484 (1974).CrossRefGoogle Scholar
  51. W. M. Saslow and G. E Reiter. Plasmons and Characteristic Energy Losses in Periodic Solids. Phys. Rev. B 7: 2955–3003 (1978).Google Scholar
  52. 40.
    N. D. Mermin. Lindhard Dielectric Function in the Relaxation Time Approximation, Phys, Rev. B 1: 2362–2363 (1970).CrossRefGoogle Scholar
  53. 41.
    A. Gras-Marti and R. H. Ritchie. lb be published.Google Scholar
  54. 42.
    R. H. Ritchie, C. J. Tlmg, V. E. Anderson, and J. C. Ashley. Electron Slowing-Down Spectra in Solids, Rad. Res. 64: 181–204 (1975).CrossRefGoogle Scholar
  55. C. J. Tùng, R. H. Ritchie, J. C. Ashley, and V E. Anderson. Inelastic Interactions of Swift Electronsin Solids, ORNL-RM-5188, Oak Ridge National Laboratory, Oak Ridge, Tènnessee (1976).Google Scholar
  56. 43.
    J. L. Fry. Dielectric Function of a Model Insulator. Phys. Rev. 179:892–905 (1969), and references therein.CrossRefGoogle Scholar
  57. 44.
    M. Zaider, J. L. Fry, and D. E. Orr. A Semiempirical Tight-Binding Calculation of the Dielectric Response Function of Water. Nucl. Tracks Rad. Meas. 16: 159–168 (1989).CrossRefGoogle Scholar
  58. 45.
    J. P. Walter and M. L. Cohen. Frequency and Wave Vector-Dependent Dielectric Function for Ge, GaAs, and ZnSe. Phys. Rev. B 6: 3800–3804 (1972).CrossRefGoogle Scholar
  59. 46.
    M. S. Hague and K. L. Kliever. Plasmon Properties in BCC Potassium and Sodium, Phys. Rev. B 7: 2416–2430 (1973).CrossRefGoogle Scholar
  60. 47.
    W Brandt and J. Reinheimer. Theory of Semiconductor Response to Charged Particles. Phys. Rev. B 2: 3104–3112 (1970).CrossRefGoogle Scholar
  61. 48.
    E. Tbsatti and G. P. Parravicini. Model Semiconductor Dielectric Function. J. Chem. Phys. Solids 32: 623–626 (1971).CrossRefGoogle Scholar
  62. 49.
    Z. H. Levine and S. G. Louie. New Model Dielectric Function and Exchange-Correlation Potential for Semiconductors and Insulators, Phys. Rev. B 25: 6310–6316 (1982).CrossRefGoogle Scholar
  63. 50.
    A. P. Pathak and M. Yussouf. Charged Particle Energy Loss to Electron Gas. Phys. Stat. Solid 649: 431–441 (1972).CrossRefGoogle Scholar
  64. 51.
    L. C. Emerson, R. D. Birkhoff, V. E. Anderson, and R. H. Ritchie. Electron Slowing-Down in Irradiated Silicon. Phys. Rev. B 7: 1798–1811 (1973).CrossRefGoogle Scholar
  65. 52.
    C. J. Tung, J. C. Ashley, R. D. Birkhoff, R. H. Ritchie, L. C. Emerson, and V. E. Anderson. Electron Slowing-Down Flux Spectrum in Al2O3. Phys. Rev. B 16: 3049–3055 (1977).CrossRefGoogle Scholar
  66. 53.
    B. Baron, D. Hoover, and F. Williams. Vacuum Ultraviolet Photoelectric Emission from Amorphous Ice. J. Chem. Phys. 68: 1997–1999 (1978).CrossRefGoogle Scholar
  67. 54.
    C. R. Brundle and M. W. Roberts. Surface Sensitivity of HeI Photoelectron Spectroscopy (UPS) for H2O Absorbed on Gold. Surf. Sc. 38: 234–236 (1973).CrossRefGoogle Scholar
  68. 55.
    K. Siegbahn. ESCA Applied to Free Molecules. North-Holland Publishing Co., Amsterdam (1969).Google Scholar
  69. 56.
    A.E.S. Green and J. H. Miller. Atomic and Molecular Effects in the Physical Stage in Physical Mechanisms in Radiation Biology. CONF-721001:68–115 (1974), Eds. R. D. Cooper and R. W. Wood, Technical Information Center, Office of Information Services, U.S. Atomic Energy Commission.Google Scholar
  70. 57.
    C. Moller. Über den Stoss zweier Teilchen unter Berücksichtigung der Retardation der Kräfte. Z. Physik 70: 786–795 (1931).CrossRefGoogle Scholar
  71. 58.
    W. R. Ferrell, R. H. Ritchie, and T L. Ferrell. Identical Particle States and Operators and the Case of Tivo-Electron Scattering. Am. J. Phys. 52: 915–920 (1984).CrossRefGoogle Scholar
  72. 59.
    R. H. Ritchie and J. C. Ashley. The Interaction of Hot Electrons with a Free Electron Gas. J. Phys. Chem. Solids 26: 1689–1694 (1965).CrossRefGoogle Scholar
  73. 60.
    C. J. ‘Ring, R. H. Ritchie, J. C. Ashley, and V. E. Anderson. Inelastic Interactions of Swift Electrons in Solids. ORNL-TM-5188, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1976).Google Scholar
  74. 61.
    Some time after our work was done, Ashley (Ref.28) carried out a calculation of the stopping power of water for electrons. He compared his results with those displayed in Ref. 60 and found differences at low energies that are YA 25%. He states that our early calculation of the stopping power (ref.8) of water used an exchange correction chosen to make the results agree with values recommended in ICRU Report 16 and attributes this to a private communication with one of us (RHR). This statement is based on a misunderstanding. No exchange correction was used in the results presented in Ref. 8. Further, exchange corrections according to Eq. (29) were incorporated into the OREC code soon afterwards.Google Scholar
  75. 62.
    a) H. G. Paretzke, J. E. Turner, R. N. Hamm, H. A. Wright, and R. H. Ritchie. Calculated Yields and Fluctuation for Electron Degradation in Liquid Water and Water Vapor, J. Chem. Phys. 84: 3182–3188 (1986).CrossRefGoogle Scholar
  76. (b).
    J. E. Turner, H. G. Paretzke, R. N. Hamm, H. A. Wright, and R. H. Ritchie. Comparison of Electron Transport Calculations for Water in the Liquid and Vapor Phases. Proc,8th Symposium on Microdosimetry, Julich, EUR8395 en, 175–185 (1982).Google Scholar
  77. 63.
    J. J. Quinn. Range of Excited Electrons in Metals. Phys. Rev. 126: 1453–1457 (1962).CrossRefGoogle Scholar
  78. 64.
    K. K. Thornber and R. P. Feynman. Velocity Acquired by an Electron in a Finite Electric Field in a Polar Crystal. Phys. Rev. B 1: 40–99 (1970).CrossRefGoogle Scholar
  79. 65.
    J. C. Ashley and R. H. Ritchie. Quantum Treatment of Real Ttansitions. Phys. Rev. 174: 1572–1577 (1968).CrossRefGoogle Scholar
  80. 66.
    T McMullen, B. Bergersen, and P. Jena. Momentum of a Fast Particle in a Dissipative Medium with an Excitation Threshold. J. Phys. C9: 975–989 (1976).Google Scholar
  81. 67.
    C. C. Sung and R. H. Ritchie. The Energy-Loss Spectra of Fast Charged Particles Passing Through a Thin Metallic Film. J. Phys. C14: 2409–2421 (1981).Google Scholar
  82. 68.
    N. Bohr. The Penetration of Atomic Particles Through Matter. Eq. 3.1.8, Mat.-Fys. Medd. Kgl. Dansk Vidensk Selsk., 18:No. 8, 1–144 (1948).Google Scholar
  83. 69.
    R. H. Ritchie. Geminate Recombination in Dispersive Media. lb be published.Google Scholar
  84. 70.
    J. E. Inglesfield. Plasmon Satellite in Core-Level Photoemission, J. Phys. C16: 403–416 (1983).Google Scholar
  85. 71.
    R. H. Ritchie. Quantal Aspects of the Spatial Resolution of Energy-Loss Measurements in Electron Microscopy I. Broad-Beam Geometry. Phil. Mag. A44: 931–942 (1981).CrossRefGoogle Scholar
  86. 72.
    R. H. Ritchie and A. Howie. Inelastic Scattering Probabilities in Scanning Transmission Electron Microscopy. Phil. Mag. A58: 753–767 (1988).CrossRefGoogle Scholar
  87. 73.
    U. Fano. The Formulation of Track Structure Theory in Charged Particle Tracks in Solids and Liquids, Eds. G. E. Adams, D. K. Bewley, and J. W. Boag, pp. 1–8, The Institute of Physics, London (1970).Google Scholar
  88. 74.
    M. Burton. Fundamental Processes in Radiation Chemistry: Effects of the State of Aggregation, Discuss. Faraday Soc. 36: 7–18 (1963).CrossRefGoogle Scholar
  89. 75.
    J. L. Magee. Elementary Processes in the Action of Ionizing Radiation. In Comparative Effects of Radiation, J. Wiley, 130–147 (1960).Google Scholar
  90. 76.
    R. H. Ritchie, R. N. Hamm, J. E. Thrner, H. A. Wright, J. C. Ashley, and G. J. Basbas. Physical Aspects of Charged Particle Track Structure. Nucl. Tracks. Rad. Meas. 16: 141–155 (1989).CrossRefGoogle Scholar
  91. 77.
    M. Scheinfein, A. Muray, and M. Isaacson. Electron Energy Loss Spectroscopy Across a Metal-Insulator Interface at Sub-Nanometer Spatial Resolution. Ultramicroscopy 16: 233–240 (1985).CrossRefGoogle Scholar
  92. 78.
    P. E. Batson, K. L. Kavanaugh, J. M. Woodall, and J. W. Mayer. Electron-Energy Loss Scattering Near a Single Misfit Location in a Dielectric Medium of Randomly Distributed Metal Particles. Phys. Rev. Leu. 57: 2729–2732 (1986).CrossRefGoogle Scholar
  93. 79.
    A. L. Bleloch, A. Howie, R. H. Milne, and M. C. Walls. Elastic and Inelastic Scattering Effects in Reflection Electron Microscopy. Ultramicroscopy 29: 175–182 (1989).CrossRefGoogle Scholar
  94. 80.
    D. Imeson, R. H. Milne, S. D. Berger, and D. McMullan. Secondary Electron Detection in the Scanning Transmission Electron Microscope. Ultramicroscopy 17: 243–250 (1985).CrossRefGoogle Scholar
  95. 81.
    R. H. Ritchie, A. Howie, P. M. Echenique, G. J. Basbas, T. L. Ferrell, and J. C. Ashley. Plasmons in Scanning Transmission Electron Microscopy Electron Spectra. ScanningMicrosc. Supp. 4 (1990).Google Scholar
  96. 82.
    J. E. Tùrner, R. N. Hamm, H. A. Wright, R. H. Ritchie, J. L. Magee, A. Chatterjee, and W E. Bolsh. Studies to Link the Basic Radiation Physics and Chemistry of Liquid Water, Rad. Phys. Chem. 32: 503–510 (1988).Google Scholar
  97. 83.
    Note that J. L. Magee [Electron Energy Loss Processes at Subelectronic Excitation Energies in Liquids, Can. J. Chem. 55, 1847 (1977)] has considered carefully the division of energy losses between those due to `indirect’ interactions with the electric field induced in the medium by the electron, and `direct’ interactions with the short range quantum forces occurring in direct collisions. Recently U. Fano [Short-and Long- Range Interactions of Slow Electrons in Condensed Matter: Effects on Reflection and Transmission, Phys. Rev. A36, 1919 (1987)] has discussed subexcitation electron energy losses in a similar way. Mann and Green [The Fate of the Dry Electron - Preliminary Investigation, Int. J. Quant. Chem. 39:47–57 (1991)] have modeled the loss of subexcitation electrons in water as well as the hydration process.Google Scholar
  98. 84.
    W. E. Botch, J. E. Turner, H. Yoshida, K. B. Jacobson, R. N. Hamm, H. A. Wright, R. H. Ritchie, and C. E. Klots. Monte Carlo Simulation of Indirect Damage to Biomolecules Irradiated in Aqueous Solution - The Radiolysis of Glycylglycine, ORNL/TM-10851, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1988).Google Scholar
  99. 85.
    H. Yoshida, W. E. Bolch, K. B. Jacobson, and J.E. Turner, Measurement of Free Ammonia Produced by X-Irradiation of Glycylglycine in Aqueous Solutions, Radiat. Res. 121: 257–261 (1990).PubMedCrossRefGoogle Scholar
  100. 86.
    H. A. Wright, J. L. Magee, R. N. Hamm, A. Chatterjee, J. E. Thrner, and C. E. Klots, Calculations of Physical and Chemical Reactions Produced in Irradiated Water Containing DNA, Radiat. Prot. Dos. 13: 135–136 (1989).Google Scholar
  101. 87.
    J. E. Thrner, W E. Bolch, H. Yoshida, K. B. Jacobson, H. A. Wright, R. H. Hamm, R. H. Ritchie, and C. E. Klots, Radiation Damage to a Biomolecule: New Physical Model Successfully Traces Molecular Events, Int. Jour. Radiat. Appl. Instrum.,in press.Google Scholar
  102. 88.
    C. D. Jonah, M. S. Matheson, J. R. Miller, and E. J. Hart. J. Phys. Chem. 80:1267–1270 (1976).CrossRefGoogle Scholar
  103. C. D. Jonah and J. R. Miller. J. Phys. Chem. 81: 1974–1976 (1977).CrossRefGoogle Scholar
  104. T. Sumiyoshi and M. Katayama. Chem. Phys. Lett. 1881–1990 (1982).Google Scholar
  105. 89.
    K. A. Long, H. G. Paretzke, F. Muller-Plathe, and G.H.F. Diercksen. Calculations of Double Differential Cross Sections for the Interaction of Electrons with a Water Molecule, Clusters of Water Molecules and Liquid Water. J. Chem. Phys. 91: 1569–1578 (1989).CrossRefGoogle Scholar
  106. 90.
    Y. J. Xu, G. S. Khandelwal, and J. W. Wilson. Proton Stopping Cross Sections of Liquid Water. Phys. Rev. A32: 629–632 (1985).CrossRefGoogle Scholar
  107. 91.
    R. Voltz. Thermalization of Subexcitation Electrons in Dense Molecular Matter. In Excess Electrons in Dielectric Media. TO be published.Google Scholar
  108. 92.
    R. H. Ritchie, A. Gras-Marti, and J. C. Ashley. The Theory of Track Formation in Insulators Due to Densely Ionizing Particles. Proc. 12th Werner Brandt Int. Conf. on Penetration of Charged Particles in Matter,Sept. 4–7, 1989, CONF-890921, Oak Ridge National Laboratory, Oak Ridge, Tennessee.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • R. H. Ritchie
    • 1
    • 2
  • R. N. Hamm
    • 1
  • J. E. Turner
    • 1
    • 2
  • H. A. Wright
    • 3
  • W. E. Bolch
    • 4
  1. 1.Oak Ridge National LaboratoryHealth and Safety Research DivisionOak RidgeUSA
  2. 2.Department of PhysicsUniversity of TennesseeKnoxvilleUSA
  3. 3.Consultec Scientific, Inc.KnoxvilleUSA
  4. 4.Department of Nuclear EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations