Atomic and Molecular Theory

  • Mitio Inokuti
Part of the Basic Life Sciences book series (BLSC, volume 58)

Abstract

The multifaceted role of theoretical physics in understanding the earliest stages of radiation action is discussed. Scientific topics chosen for the present discourse include photoabsorption, electron collisions, ionic collisions, and electron transport theory. Connections of atomic and molecular physics with condensed-matter physics are also discussed. The present article includes some historical perspective and an outlook for the future.

Keywords

Migration Dioxide Hydrate Manifold Attenuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Cormack. Representation of a Function by Its Line Integrals, with Some Radiological Applications. J. Appl. Phys. 34: 2722–2727 (1963).Google Scholar
  2. 2.
    A. M. Cormack. Representation of a Function by Its Line Integrals, with Some Radiological Applications: II. J. Appl. Phys. 35: 2908–2913 (1964).Google Scholar
  3. 3.
    R. S. Caswell. Deposition of Energy by Neutrons in Spherical Cavities. Radiat. Res. 27: 92–107 (1966).Google Scholar
  4. 4.
    R. S. Caswell, J. J. Coyne, H. M. Gerstenberg, and E. J. Axton. Basic Data Necessary for Neutron Dosimetry. Radiat. Prot. Dosim. 23: 41–44 (1988).Google Scholar
  5. 5.
    R. S. Caswell and J. J. Coyne. Effects of Track Structure on Neutron Microdosimetry and Nanodosimetry. Nucl. Tracks Radiat. Meas. 16: 187–195 (1989).Google Scholar
  6. 6.
    J. J. Coyne, R. S. Caswell, J. Zoetelief, and B. R. L. Siebert. Improved Calculations of Microdosimetric Spectra for Low-Energy Neutrons. Radiat. Prot. Dosim.,in press.Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz. Statistical Physics, translated by J. B. Sykes and M. J. Kearsley, Pergamon Press, Oxford (1969).Google Scholar
  8. 8.
    E. M. Lifshitz and L. P. Pitaevskii. Physical Kinetics, translated by J. B. Sykes and R. N. Franklin, Pergamon Press, Oxford (1981).Google Scholar
  9. 9.
    J. J. Nickson (ed.). Symposium on Radiobiology. The Basic Aspects of Radiation Effects on Living Cells, Oberlin College, June 14–18, 1950. John Wiley and Sons, Inc., New York (1952).Google Scholar
  10. 10.
    J. L. Magee, M. D. Kamen, and R. L. Platzman (eds.). Physical and Chemical Aspects of Basic Mechanisms in Radiobiology. Proceedings of an Informal Conference, Highland Park, Illinois. Publication No. 305, National Academy of Sciences - National Research Council, Washington, D.C. (1953).Google Scholar
  11. 11.
    R. D. Cooper and R. W Wood (eds.). Physical Mechanisms in Radiation Biology. Proceedings of a Conference held at Airlie, Virginia, Oct. 11–14, 1972. USAEC Technical Information Center, Oak Ridge, Tennessee (1974).Google Scholar
  12. 12.
    U. Fano. Secondary Electrons: Average Energy Loss Per Ionization. Symposium on Radiobiology, Oberlin College, June 14–18, 1950, pp. 13–24. John Wiley and Sons, Inc., New York (1952).Google Scholar
  13. 13.
    R. L. Platzman. On the Primary Process in Radiation Chemistry and Biology. Symposium on Radiobology, Oberlin College, June 14–18, 1950, pp. 97–116. John Wiley and Sons, Inc., New York (1952).Google Scholar
  14. 14.
    R. L. Platzman. Influence of Details of Electronic Binding on Penetration Phenomena, and the Penetration of Energetic Charged Particles Through Liquid Water. Symposium on Radiobology, Oberlin College, June 14–18, 1950, pp. 139–176. John Wiley and Sons, Inc., New York (1952).Google Scholar
  15. 15.
    L. H. 7bburen. The Proceedings of the Present Conference.Google Scholar
  16. 16.
    International Commission on Radiation Units and Measurements. Average Energy Required to Form an Ion Pair, ICRU Report 31, Washington, D.C. (1974).Google Scholar
  17. 17.
    R. L. Platzman. Symposium on Radiobology, Oberlin College, June 14–18, 1950, pp. 20–21. John Wiley and Sons, Inc., New York (1952).Google Scholar
  18. 18.
    U. Fano and W. Lichten. Interpretation of Ar+-Ar Collisions at 50 keV. Phys. Rev. Lett. 14: 627–629 (1965).Google Scholar
  19. 19.
    U. Fano. Platzman’s Analysis of the Delivery of Radiation Energy to Molecules. Radiat. Res. 64: 217–232 (1975).PubMedGoogle Scholar
  20. 20.
    E. J. Hart and J. W. Boag. Absorption Spectrum of the Hydrated Electron in Water and in Aqueous Solutions. J. Am. Chem. Soc. 84: 4090–4095 (1962).Google Scholar
  21. 21.
    W. Brandt and R. H. Ritchie. Primary Processes in the Physical Stage. Proceedings of a Conference held at Airlie, Virginia, October 11–14, 1972, pp. 20–46. USAEC Technical Information Center, Oak Ridge, Tennessee (1974).Google Scholar
  22. 22.
    M. Inokuti. Critique of Cross-Section Data Governing the Physical Stage of Radiation Action. Proceedings of a Conference held at Airlie, Virginia, October 11–14, 1972, pp. 51–67. USAEC Technical Information Center, Oak Ridge, Tennessee (1974).Google Scholar
  23. 23.
    A. E. S. Green and J. H. Miller. Atomic and Molecular Effects in the Physical Stage. Proceedings of a Conference held at Airlie, Virginia, October 11–14, 1972, pp. 68–111. USAEC Technical Information Center, Oak Ridge, Tennessee (1974).Google Scholar
  24. 24.
    H. H. Rossi and A. M. Kellerer. Effects of Spatial Temporal Distribution of Primary Events. Proceedings of a Conference held at Airlie, Virginia, October 11–14, 1972, pp. 224–243. USAEC Technical Information Center, Oak Ridge, Tennessee (1974).Google Scholar
  25. 25.
    U. Fano. Correlations of Tivo Excited Electrons. Rep. Prog. Phys. 46: 97 (1983).Google Scholar
  26. 26.
    M. Inokuti. Foreword to the Proceedings of the Workshop on Electronic and Ionic Collision Cross Sections Needed in the Modeling of Radiation Interactions with Matter, held on December 6–8, 1983, at Argonne National Laboratory, pp. iii-iv, Report ANL-84–28 (1984).Google Scholar
  27. 27.
    M. Inokuti. Cross Sections for Inelastic Collisions of Fast Charged Particles with Atoms and Molecules. Proceedings of an Advisory Group Meeting on Nuclear and Atomic Data for Radiotherapy and Related Radiobiology, Rijswijk, The Netherlands, September 16–20, 1987, pp. 57–365. International Atomic Energy Agency, Vienna (1987).Google Scholar
  28. 28.
    H. Bethe. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Physik 5: 325–400 (1930).Google Scholar
  29. 29.
    U. Fano. Penetration of Protons, Alpha Particles, and Mesons. Ann. Rev. Nucl. Sci. 13: 1–66 (1963).Google Scholar
  30. 30.
    M. Inokuti. Inelastic Collisions of Fast Charged Particles with Atoms and Molecules-The Bethe Theory Revisited. Rev. Mod. Phys. 43: 297–347 (1971).Google Scholar
  31. 31.
    M. Inokuti. VUV Absorption and Its Relation to the Effects of Ionizing Corpuscular Radiation. Photochem. Photobiol. 44: 297–285 (1985).Google Scholar
  32. 32.
    R. L. Platzman. Energy Spectrum of Primary Activations in the Action of Ionizing Radiation. Proceedings of the Fourth International Congress of Radiation Research, Cortina d’Ampezzo, June-July 1966, G. Silini (ed.), pp. 20–42. North-Holland, Amsterdam (1967).Google Scholar
  33. 33.
    J. A. R. Samson. Atomic Photoionization. Handbuch der Physik, edited by S. Flügge (ed.), 31: 123–213. Springer Verlag, Berlin (1982).Google Scholar
  34. 34.
    J. W. Gallagher, C. E. Brion, J. A. R. Samson, and P. W. Langhoff. Absolute Cross Sections for Molecular Photoabsorption, Partial Photoionization, and Ionic Photofragmentation Processes. J. Phys. Chem. Ref. Data 17: 9–153 (1988).Google Scholar
  35. 35.
    U. Fano and J. W. Cooper. Spectral Distribution of Atomic Oscillator Strengths. Rev. Mod. Phys. 40: 441–507 (1968)Google Scholar
  36. U. Fano and J. W. Cooper. Spectral Distribution of Atomic Oscillator Strengths. Rev. Mod. Phys. 441: 724–725 (1969).Google Scholar
  37. 36.
    A. F. Starace. Theory of Atomic Photoionization. Handbuch der Physik, S. Flügge (ed.), 31: 1–121. Springer Verlag, Berlin (1982).Google Scholar
  38. 37.
    M. Y. Amusia. Atomic Photoeffect. Plenum Press, New York (1990).Google Scholar
  39. 38.
    J. L. Dehmer and D. Dill. The Continuum Multiple-Scattering Approach to Electron-Molecule Scattering and Molecular Photoionization. Electron-Molecule and Photon-Molecule Collisions, T Rescigno, V. McKoy, and B. Schneider (eds.), pp. 225–265. Plenum Press, New York (1979).Google Scholar
  40. 39.
    N. E. Henrikson. On the Evaluation of Branching Ratios in Molecular Photofragmentation. Chem. Phys. Lett. 169: 229–235 (1990).Google Scholar
  41. 40.
    Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, and K. Takayanagi. Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules. J. Phys. Chem. Ref Data 15: 985–1010 (1986).Google Scholar
  42. 41.
    Y. Itikawa, K. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayash, H. Nishimura, and S. Turubuchi. Cross Sections for Collisions of Electrons and Photons with Oxygen Molecules. J. Phys. Chem. Ref Data 18: 23–42 (1989).Google Scholar
  43. 42.
    M. Hayashi. Electron Collision Cross Sections for Atoms and Molecules Determined from Beam and Swarm Data, in Atomic and Molecular Data for Radiotherapy. Proceedings of an Advisory Group Meeting Organized by the International Atomic Energy Agency, Vienna, June 13–16, 1988, IAEA-TECDOC-506, pp. 193–199. International Atomic Energy Agency, Vienna (1989).Google Scholar
  44. 43.
    I. Shimamura and K. Tàkayanagi (eds.). Electron-Molecule Collisions. Plenum Press, New York (1984).Google Scholar
  45. 44.
    L. G. Christophorou (ed.). Electron-Molecule Interactions and Their Applications, Vols. 1 and 2 (Academic Press, New York (1983–1984).Google Scholar
  46. 45.
    E. W. McDaniel. Atomic Collisions: Electron and Photon Projectiles. John Wiley zhaohuan Sons, New York (1989).Google Scholar
  47. 46.
    H. Sato, M. Kimura, and K. Fujima. Elastic and Momentum TYansfer Cross Sections in Electron Scattering by Water Molecules. Chem. Phys. Lett. 145: 21–25 (1988).Google Scholar
  48. 47.
    R. H. Bransden. Charge TYansfer and Ionization in Fast Collisions. Electronic and Atomic Collisions: Invited Papers of the XV International Conference on the Physics of Electronic and Atomic Collisions, Brighton, UK, July 1987, H. B. Gilbody, W. R. Newell, F. H. Read, and A.C.H. Smith (eds.), pp. 255–269. North-Holland, Amsterdam (1988).Google Scholar
  49. 48.
    R. E. Olson. Multiple Electron Capture and Ionization in Ion-Atom Collisions. Electronic and Atomic Collisions: Invited papers of the XV International Conference on the Physics of Electronic and Atomic Collisions, Brighton, UK, July 1987, H. B. Gilbody, W. R. Newell, F. H. Read, and A. C. H. Smith (eds.), pp. 271–285. North-Holland, Amsterdam (1988).Google Scholar
  50. 49.
    M. Kimura and N. F. Lane. The Low-Energy, Heavy-Particle Collisions-A Close-Coupling Treatment. Advances in Atomic, Molecular, and Optical Physics, Vol. 26, D. Bates and B. Bederson (eds.), pp. 80–160. Academic Press, Boston (1990).Google Scholar
  51. 50.
    E. R. Bernstein (ed.). Atomic and Molecular Clusters. Elsevier, Amsterdam (1990).Google Scholar
  52. 51.
    J. Los and J. J. C. Geerlings. Charge Exchange in Atom-Surface Collisions. Phys. Rep. 190: 133–190 (1990).Google Scholar
  53. 52.
    A. V. Phelps. Cross Sections and Swarm Coefficients for H+, H2+, H3+, H, H2, and H in H2 for Energies from 0.1 eV to 10 keV. J. Phys. Chem. Ref. Data 19: 653–675 (1990).Google Scholar
  54. 53.
    M. Inokuti. The Future of Atomic Collision Theory. Comments At. Mol. Phys. 10: 99–106 (1981).Google Scholar
  55. 54.
    U. Fano and A.R.P. Rau. Atomic Collisions and Spectra. Academic Press, Orlando, Florida (1986).Google Scholar
  56. 55.
    M. A. Dillon and M. Inokuti. Analytic Representation of the Dipole Oscillator-Strength Distribution. J. Chem. Phys. 74: 6271–6277 (1981).Google Scholar
  57. 56.
    M. A. Dillon and M. Inokuti. Analytic Representation of the Dipole Oscillator-Strength Distribution: II. The Normalization Factor for Electron Continuum States in Atomic Fields. J. Chem. Phys. 82: 4415–4424 (1985).Google Scholar
  58. 57.
    M. A. Dillon, M. Inokuti, and Z.-W. Wang. Analytic Representation of the Generalized Oscillator Strength for Ionization. Radiat. Res. 102: 151–164 (1985).Google Scholar
  59. 58.
    M. Inokuti and M. A. Dillon. What Formulas Are Good for Representing Dipole and Generalized Oscillator-Strength Spectra? Physics of Ionized Gases: Proceedings of the Twelfth Yugoslav Summer School and International Symposium on the Physics of Ionized Gases, Sibenik, September 3–7, 1984, M. M. Popvic and P. Krstic (eds.), pp. 3–22. World Scientific, Singapore (1986).Google Scholar
  60. 59.
    M. Inokuti, M. A. Dillon, J. H. Miller, and K. Omidvar. Analytic Representation of Secondary-Electron Spectra. J. Chem. Phys. 87: 6967–6972 (1987).Google Scholar
  61. 60.
    L. G. Christophorou. The Proceedings of the Present Conference.Google Scholar
  62. 61.
    R. H. Ritchie. The Proceedings of the Present Conference.Google Scholar
  63. 62.
    M. Inokuti. How Is Radiation Energy Absorption Different in the Condensed Phase and in the Gas? Hoshasen Kagaku (Radiation Chemistry) 49: 2–14 (1990) [In Japanese]. Radiat. Effects and Defects in Solid, in press [in English].Google Scholar
  64. 63.
    L. D. Landau and E. M. Lifshitz. Electrodynamics of Continuous Media, translated by J. B. Sykes and J. S. Bell, Chapter IX. Pergamon Press, Oxford (1960).Google Scholar
  65. 64.
    U. Fano. Normal Modes of a Lattice of Oscillators with Many Resonances and Dipolar Coupling. Phys. Rev. 118: 451–455 (1960).Google Scholar
  66. 65.
    U. Fano. Atomic Interactions in Dense Materials. Phys. Rev. 103: 1202–1218 (1956).Google Scholar
  67. 66.
    U. Fano. A Mechanism of Collective Phenomena. A preprint of an article to be published.Google Scholar
  68. 67.
    L. Sanche. ‘Transmission of 0–15 eV Monoenergetic Electrons Through Thin-Film Molecular Solids. J. Chem. Phys. 71: 4860–4882 (1979).Google Scholar
  69. 68.
    G. Bader, G. Perluzzo, L. G. Caron, and L. Sanche. Structural-Order Effects in Low-Energy Electron Transmission Spectra of Condensed Ar, Kr, Xe, N2, CO, and CO2. Phys. Rev. B 30: 78–84 (1984).Google Scholar
  70. 69.
    G. Perluzzo, L. Sanche, C. Gaubert, and R. Baudoing. Thickness-Dependent Interference Structure in the 0–15-eV Electron Transmission Spectra of Rare-Gas Films. Phys. Rev. B 30: 4292–4296 (1984).Google Scholar
  71. 70.
    M. Michaud and L. Sanche. Interactions of Low-Energy Electrons (1–30 eV) with Condensed Molecules: I. Multiple Scattering Theory. Phys. Rev. B 30: 6067–6077 (1984).Google Scholar
  72. 71.
    L. Sanche and M. Michaud. Interactions of Low-Energy Electrons (1–30 eV) with Condensed Molecules: Vibrational-Librational Excitation and Shape Resonances in N2 and CO films. Phys. Rev. B 30: 6078–6092 (1984).Google Scholar
  73. 72.
    M. Michaud and L. Sanche. Total Cross Sections for Slow-Electron (1–20 eV) Scattering in Solid H2O. Phys. Rev. A 36: 4672–4683 (1987).PubMedGoogle Scholar
  74. 73.
    M. Michaud and L. Sanche. Absolute Vibrational Excitation Cross Sections for Slow-Electron (1–18 eV) Scattering in Solid H2O. Phys. Rev. A 36: 4684–4699 (1987).PubMedGoogle Scholar
  75. 74.
    L. Sanche. Primary Interactions of Low-Energy Electrons in Condensed Matter. Excess Electrons in Dielectric Media,C. Ferrandini and J.-P. Jay-Gerin (eds.), to appear as a CRC Uniscience Book. (This review article summarizes the work of the author’s group. Refs. 66–72 are representative of dozens of papers published by the group.)Google Scholar
  76. 75.
    U. Fano, J. A. Stephens, and M. Inokuti. Absence of Resonances in the Elastic Scattering of Electrons in Molecular Solids. J. Chem. Phys. 85: 6239–6240 (1986).Google Scholar
  77. 76.
    U. Fano and J. A. Stephens. Slow Electrons in Condensed Matter. Phys. Rev. B 34: 438–441 (1986).Google Scholar
  78. 77.
    U. Fano. Studies of Slow Electron Action on Condensed Media. Radiat. Phys. Chem. 32: 95–97 (1988).Google Scholar
  79. 78.
    J. A. Stephens and U. Fano. Slow Electrons in Condensed Matter. The Large Polaron. Phys. Rev. A 38: 3372–3376 (1988).PubMedGoogle Scholar
  80. 79.
    P. Knipp. Interaction of Slow Electrons with Density Fluctuations in Condensed Materials: Calculation of Stopping Power. Phys. Rev. B 37: 12–17 (1988).Google Scholar
  81. 80.
    U. Fano and N.-Y. Du. Dissipative Polarization by Slow Electrons. Appl. Radiat. Isot. (in press).Google Scholar
  82. 81.
    L. V. Spencer and U. Fano. Energy Spectrum Resulting from Electron Slowing Down. Phys. Rev. 93: 1172–1181 (1954).Google Scholar
  83. 82.
    M. J. Berger. Monte Carlo Calculation of the Penetration and Diffusion of Fast Charged Particles. Methods in Computational Physics, Vol. 1, B. Adler, S. Fernbach, and M. Rotenberg (eds.), pp. 135–215. Academic Press, New York (1963).Google Scholar
  84. 83.
    T M. Jenkins, W. R. Nelson, and A. Rindi (eds.). Monte Carlo Transport of Electrons and Photons. Plenum Press, New York (1988).Google Scholar
  85. 84.
    H. G. Paretzke. Radiation ‘tack Structure Theory. Kinetics of Non-Homogeneous Processes, G. R. Freeman (ed.), pp. 89–170. John Wiley zhaohuan Sons, New York (1987).Google Scholar
  86. 85.
    A.R.P. Rau, M. Inokuti, and D. A. Douthat. Variational Treatment of Electron Degradation and Yields of Initial Molecular Species. Phys. Rev. A 18: 971–988 (1978).Google Scholar
  87. 86.
    M. Inokuti, D. A. Douthat, and A. R. P. Rau. Statistical Fluctuations in the Ionization Yield and Their Relation to the Degradation Spectrum. Phys. Rev. A 22: 445–453 (1983).Google Scholar
  88. 87.
    M. Inokuti and E. Eggarter. Theory of Initial Yields of Ions Generated by Electrons in Binary Mixtures: II. J. Chem. Phys. 86: 3870–3875 (1987).Google Scholar
  89. 88.
    M. Inokuti, M. A. Dillon, and M. Kimura. Theory of Electron Degradation and Yields of Initial Molecular Species. Int. J. Quantum Chem. Symp. Series 21: 251–266 (1987).Google Scholar
  90. 89.
    M. Inokuti, M. Kimura, and M. A. Dillon. Time-Dependent Aspects of Electron Degradation: II. General Theory. Phys. Rev. A 38: 1217–1224 (1988).PubMedGoogle Scholar
  91. 90.
    K. Kowari, M. Kimura, and M. Inokuti. Electron Degradation and Yields of Initial Products: V. Degradation Spectra, the Ionization Yield, and the Fano Factor for Argon Under Electron Degradation. Phys. Rev. A 39: 5545–5553 (1989).PubMedGoogle Scholar
  92. 91.
    K. Kowari, M. Inokuti, and M. Kimura. Time-Dependent Aspects of Electron Degradation: V. Ar–H2 Mixtures. Phys. Rev. A 42: 795–802 (1990).PubMedGoogle Scholar
  93. 92.
    M. A. Dillon, M. Inokuti, and M. Kimura. Time-Dependent Aspects of Electron Degradation: I. Subexcitation Electrons in Helium or Neon Admixed with Nitrogen. Radiat. Phys. Chem. 32: 43–48 (1988).Google Scholar
  94. 93.
    A. Pagnamenta, M. Kimura, M. Inokuti, and K. Kowari. Electron Degradation and Yields of Initial Products: III. Dissociative Attachment in Carbon Dioxide. J. Chem. Phys. 89: 6220–6225 (1988).Google Scholar
  95. 94.
    K. Kowari, M. Kimura, and M. Inokuti. Electron Degradation and Yields of Initial Products: II. Subexcitation Electrons in Molecular Nitrogen. J. Chem. Phys. 89: 7229–7237 (1988).Google Scholar
  96. 95.
    M. Kimura, M. Inokuti, K. Kowari, M. A. Dillon, and A. Pagnamenta. Time-Dependent Aspects of Electron Degradation: IV. Subexcitation Electrons in Nitrogen and Carbon Dioxide. Radiat. Phys. Chem. 34: 481–485 (1989).Google Scholar
  97. 96.
    M. A. Ishii, Mineo Kimura, Mitio Inokuti, and Ken-ichi Kowari. Electron Degradation and Yields of Initial Products: IV. Subexcitation Electrons in Molecular Oxygen. J. Chem. Phys. 90: 3081–3086 (1989).Google Scholar
  98. 97.
    M. Kimura, M. Inokuti, and K. Kowari. Electron Degradation and Yields of Initial Products: VI. Energy Spectra of Subexcitation Electrons in Argon and Molecular Hydrogen. Phys. Rev. A 40: 2316–2320 (1989).PubMedGoogle Scholar
  99. 98.
    M. Inokuti. Subexcitation Electrons in Gases, in Molecular Processes in Space, T Watanabe, I. Shimamura, M. Shimizu, and Y. Itikawa (eds.), pp. 65–86. Plenum, London (1990).Google Scholar
  100. 99.
    M. Kimura and M. Inokuti. Subexcitation Electrons in Molecular Gases. Comments At. Mol. Phys. 24: 269–286 (1990).Google Scholar
  101. 100.
    M. A. Ishii, M. Kimura, and M. Inokuti. Electron Degradation and Yields of Initial Products: VII. Subexcitation Electrons in Gaseous and Solid H20. Phys. Rev. A 42: 6486–6496 (1990).PubMedGoogle Scholar
  102. 101.
    M. Inokuti. Subexcitation Electrons: An Appraisal of Our Understanding. Appl. Radiat. Iso. (in press).Google Scholar
  103. 102.
    B. Shizgal and D.R.A. McMahon. Electric Field Dependence of Transient Electron Transport in Rare-Gas Moderators. Phys. Rev. A 32: 3669–3680 (1985).PubMedGoogle Scholar
  104. 103.
    B. Shizgal, D.R.A. McMahon, and L. A. Viehland. Thermalization of Electrons in Gases. Radiat. Phys. Chem. 34: 35–50 (1989).Google Scholar
  105. 104.
    K. Kowari and B. Shizgal. Time Dependent Electron Energy Distribution Functions and Degradation Spectra: A Comparison of the Spencer-Fano Equation and the Boltzmann Equation. Appl. Radiat. Iso. (In press)Google Scholar
  106. 105.
    A. Wallqvist, D. Thirumalai, and B. J. Berne. Localization of an Excess Electron in Water Clusters. J. Chem. Phys. 85: 1583–1591 (1986).Google Scholar
  107. 106.
    D. F. Coker, B. J. Berne, and D. Thirumalai. Path Integral Monte Carlo Studies of the Behavior of Excess Electrons in Simple Fluids. J. Chem. Phys. 86: 5689–5702 (1987).Google Scholar
  108. 107.
    A. Wallqvist, D. Thirumalai, and B. J. Berne. Path Integral Monte Carlo Study of the Hydrated Electron. J. Chem. Phys. 86: 6404–6418 (1987).Google Scholar
  109. 108.
    C. D. Jonah, C. Romero, and A. Rahman. Hydrated Electron Revisited Via the Feynman Path Integral Route. Chem. Phys. Lett. 123: 209–214 (1986).Google Scholar
  110. 109.
    R. N. Barnett, U. Landman, C. L. Cleveland, and J. Jortner. Electron Localization in Water Clusters: I. Electron-Water Pseudopotential. J. Chem. Phys. 88: 4421–4428 (1988).Google Scholar
  111. 110.
    R. N. Barnett, U. Landman, C. L. Cleveland, and J. Jortner. Electron Localization in Water Clusters: II. Surface and Internal States. J. Chem. Phys. 88: 4429–4447 (1988).Google Scholar
  112. 111.
    E. Fermi. Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spettrali. [On the Pressure Shift of the Higher-Order Lines of the Spectral Series] Nuovo Cimento 11: 157–166 (1934). English translation is available as NTC-TRANS-II-580.Google Scholar
  113. 112.
    R. Schiller. Ion-Electron Pairs in Condensed Polar Media Treated as H-Like Atoms. J. Chem. Phys. 92: 5527–5532 (1990).Google Scholar
  114. 113.
    N.-Y. Du and C. H. Greene. Multichannel Rydberg Spectra of Rare Gas Dimers. J. Chem. Phys. 90: 6347–6360 (1989).Google Scholar
  115. 114.
    S. Dattagupta. Relaxation Phenomena in Condensed Matter Physics. Academic Press, Orlando, Florida (1987).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Mitio Inokuti
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations