Chemical, Molecular Biology, and Genetic Techniques for Correlating DNA Base Damage Induced by Ionizing Radiation with Biological End Points

  • Nicholas E. Geacintov
  • Charles E. Swenberg
Part of the Basic Life Sciences book series (BLSC, volume 58)


The types of DNA base damage induced by ionizing radiation, and also relevant model system investigations on replication and mutagenesis, are reviewed in this paper. Recent advanpes in DNA synthesis technology and site-directed mutagenesis suggest that these methods can be profitably utilized to correlate specific types of DNA base damage with selected biological end points. A deeper insight can be obtained into the molecular origins of mutations, and the effects of base sequence surrounding the lesions on the nature and types of mutations.


Mutation Frequency Base Substitution Mutation Spectrum Abasic Site Base Pair Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. von Sonntag, The Chemical Basis of Radiation Biology. Taylor & Francis, London (1987).Google Scholar
  2. 2.
    F Hutchinson: Chemical Changes in DNA Induced by Ionizing Radiation. Prop Nucleic Acid Res. Mol. Biol. 32: 115–154 (1985).CrossRefGoogle Scholar
  3. 3.
    J. F. Ward: DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation and Repairability. Prop. Nucleic Acids Res. Mol. Blot 35: 95–125 (1988).CrossRefGoogle Scholar
  4. 4.
    A. K. Basu and J. M. Essigman: Site-Specifically Modified Oligonucleotides as Probes for the Structural and Biological Effects of DNA-Damaging Agents. Chem. Res. Toxicol. 1: 1–18 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Schulte-Frohlinde: Comparisons of Mechanisms for DNA Strand Break Formation by the Direct and Indirect Effect of Radiation. In Mechanisms of DNA Damage and Repair, M.G. Simic, L. Grossman and A.C. Upton, eds., pp. 19–27. Plenum Press, New York (1986).Google Scholar
  6. 6.
    I. R. Radford: Effect of Cell Cycle Position and Dose on the Kinetics of DNA Double-strand Breakage Repair in X-irradiated Chinese Hamster Cells. Int. J. Radiat. BioL 52: 555–563 (1987).CrossRefGoogle Scholar
  7. 7.
    P. Wlodek and W. H. Hittelman: The Repair of Double-Strand DNA Breaks Correlates with Radiosensitivity of L5178 Y-S and L51178 Y-R Cells. Radiat. Res. 112: 146–155 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    C. K. Hill, J. Holland, C.M.C. Liu, E. M. Buess, J. G. Peak and M. J. Peak: Human Epithelial Tératocarcinoma Cells (P3): Radiobiological Characterization, DNA Damage, and Comparison with Other Rodent and Human Cell Lines. Radiat. Res. 113: 278–288 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    D. Blocher and W. Polit: DNA Strand Breaks in Ehrlich Ascite Tumor Cells at Low Doses of X-rays. II. Can Cell Death be Attributed to Double-strand Breaks? Int. J. Radiat. Biol. 42: 329–338 (1982).CrossRefGoogle Scholar
  10. 10.
    I. R. Radford: The Level of Induced DNA Double-Strand Breakage Correlates with Cell Killing After X-irradiation. Int. J. Radiat. BioL 48: 45–54 (1985).CrossRefGoogle Scholar
  11. 11.
    W. D. Henner, S. M. Grunberg and W. A. Haseltine: Sites and Structure of Gamma-Radiation-Induced DNA Strand Breaks. J. BioL Chem. 257: 11750–11754 (1982).PubMedGoogle Scholar
  12. 12.
    A. M. Duplaa and R. Téoule: Sites of Gamma Radiation-Induced DNA Strand Breaks After Alkali ‘Iteatment. Int. J. Radiat. Biol. 48: 19–32 (1985).CrossRefGoogle Scholar
  13. 13.
    R. Téoule and J. Cadet: Radio-Induced Degradation of the Base Component in DNA and Related Substances. In Effects of Ionizing Radiation in DNA, J. Huttermann, W. Kohnlein, R. Téoule and A. Bertinchamps, eds., pp. 171–202. Springer Verlag, Berlin (1978).CrossRefGoogle Scholar
  14. 14.
    C. R. Paul, A. V. Arkali, J. C. Wallace, J. McReynolds and H. C. Box: Radiation Chemistry of 2’-Deoxycytidylyl-(3’-5’)-2’-Deoxyguanosine and its Sequence Isomer in N2O and 02-Saturated Solutions. Radiat. Chem. 112: 466–477 (1987).Google Scholar
  15. 15.
    C. A. Belfi, A. V. Arkali, C. R. Paul and H. C. Box: Radiation Chemistry of a Dinucleoside Monophosphate and its Sequence Isomer. Radiat. Res. 106: 17–30 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    C. R. Paul, C. A. Belfi, A. V. Arkali and H. C. Box: Radiation Damage to Dinucleoside Monophosphates: Mediated Versus Direct Damage. Int. J. Radiat. Biol. 51: 103–114 (1987).CrossRefGoogle Scholar
  17. 17.
    C. R. Paul, J. C. Wallace, J. L. Alderfer and H. C. Box: Radiation Chemistry of d(TpApCpG) in Oxygenated Solution. Int. J. Radiat. Biot 54: 403–415 (1988).Google Scholar
  18. 18.
    P. C. Hanawalt, P. K. Cooper, A. K. Ganesan and C. A. Smith: DNA Repair in Bacteria and Mammalian Cells. Ann. Rev. Biochem. 48: 783–836 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Lindahl: DNA Repair Enzymes. Ann. Rev. Biochem. 51: 61–87 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Téoule: Review: Radiation-Induced DNA Damage and Its Repair. Int. J. Radiat. Biol. 51: 573–589 (1987).CrossRefGoogle Scholar
  21. 21.
    A. V. Arkali, J. L. Alderfer, C. R. Paul, C. A. Belfi, and H. C. Box: Characterization of Radiation and Autoxidation-Initiated Damage in DNA Model Compounds. Radiat. Phys. Chem. 32: 511–517 (1988).Google Scholar
  22. 22.
    K. Frenkel, A. Cummings, J. Solomon, J. Cadet, J. J. Steinberg and G. W. Téebor: Quantitative Determination of the 5-(hydroxymethyl) Uracil Moiety in the DNA of Gamma-Irradiated Cells. Biochemistry 24: 4527–4533 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    T. L. Morgan, J. L. Redpath and J. F. Ward: Pyrimidine Dimer Induction in E. coli DNA by Cerenkov Emission Associated with High Energy X-irradiation. Int. J. Radiat. BioL 46: 443–449 (1984).CrossRefGoogle Scholar
  24. 24.
    V. V. Duba, V. A. Pitkevich, N. G. Selyowa, I. V. Petrova and M. N. Myasnik: The Formation of Photoreactivable Damage by Direct Excitation of DNA in X-Irradiated E. coli Cells. Int. J. Radiat. Biol. 47: 49–56 (1985).CrossRefGoogle Scholar
  25. 25.
    M. Dizdaroglu: Formation of an 8-hydroxyguanine Moiety in Deoxyribonucleic Acid on Gamma-Irradiation in Aqueous Solution. Biochemistry 24: 4476–4481 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    T. Lindahl and N. Nyberg: Rate of Depurination of Native Deoxyribonucleic Acid. Biochemistry 11: 3610–3618 (1972).PubMedCrossRefGoogle Scholar
  27. 27.
    T. Lindahl: DNA Glycosylases, Endonucleases, and Base-Excision Repair. In Proc. Nucleic Acids Res. and Mol. Biot 22:135–190 (1979).Google Scholar
  28. 28.
    D. Sagher and B. Strauss: Insertion of Nucleotides Opposite Apurinic/Apyrimidinic Sites in Deoxyribonucleic Acid During in vitro Synthesis: Uniqueness of Adeneine Nucleotides. Biochemistry 22: 4518–4526 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    R. M. Schaaper, T. A. Kunkel and L. A. Loeb: Infidelity of DNA Synthesis Associated with Bypass of Apurinic Sites. In Proc. Natl. Acad. Sci. USA 80:487–491 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    L. A. Loeb and B. D. Preston: Mutagenesis by Apurinic/Apyrimidinic Sites. Ann. Rev. Genetics 20: 201–230 (1986).CrossRefGoogle Scholar
  31. 31.
    J. W. Drake and R. H. Baltz: The Biochemistry of Mutagenesis. Ann. Rev. Biochem. 45: 11–38 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    U. Hagen: Genetische Wirkungen Kleiner Strahlendosen. Naturwissen. 74: 3–11 (1987).CrossRefGoogle Scholar
  33. 33.
    G. Tèebor, R. Boorstein and J. Cadet: Repairability of Oxidative Free Radical-Mediated Damage to DNA: A Review. Int. J. Radiat. Biol. 54: 131–150 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    W. A. Deutsch and S. Linn: DNA Binding Activity from Cultured Human Fibroblasts that is Specific for Partially Depurinated DNA and that Inserts Purines into Apurinic Sites. Proc. Natl. Acad. Sci. USA 76: 141–146 (1979).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Gentil, A. Margot and A. Sarasin: Apurinic Sites Cause Mutations in Simian Virus 40. Mutat. Res. 129: 141–147 (1984).PubMedCrossRefGoogle Scholar
  36. 36.
    R. M. Schaaper and L. A. Loeb: Depurination Causes Mutation in SOS-induced Cells. Proc. Natl. Acad. Sci. 78: 1773–1777 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    R. M. Schaaper, B. W. Glickman and L. A. Loeb: Mutagenesis Resulting from Depurination is an SOS Process. Mutat. Res. 106: 1–9 (1982).PubMedCrossRefGoogle Scholar
  38. 38.
    H. Ayaki, K. Higo and O. Yamamoto: Specificity of Ionizing Radiation-Induced Mutagenesis in the lac Region of Single-Stranded Phage M13 mpl0 DNA. Nucleic Acids Res. 14: 5013–5018 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    E Sanger, S. Nicklen and A. R. Coulsen: DNA Sequencing with Chain Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467 (1977).PubMedCrossRefGoogle Scholar
  40. 40.
    B. Hoebee, M.A. v.d. Ende, J. Brouwer, P. v.d. Putte, H. Loman and J. Retèl: Mutations Induced by 60Co Gamma Irradiation in Double-Stranded Bacteriophage DNA in Nitrous-Oxide Saturated Solutions are Characterized by a High Specificity. Int. J. Rad. Biol. 56: 401–411 (1989).PubMedCrossRefGoogle Scholar
  41. 41.
    B. Hoebee, J. Brouwer, P. v.d. Putte, H. Loman and J. Retèl: Co Gamma-Rays Induce Predominantly C/G to G/C Transversions in Double-Stranded M13 DNA. Nucleic Acids Res. 16: 8147–8156 (1988).PubMedCrossRefGoogle Scholar
  42. 42.
    A. J. Grosovsky, J. G. deBoer, R J. deJong, E. A. Drobetsky and B. W. Glickman: Base Substitutions, Frameshifts, and Small Deletions Constitute Ionizing Radiation-Induced Point Mutations in Mammalian Cells. In Proc. Natl. Acad. Sci. 85:185–188 (1988).PubMedCrossRefGoogle Scholar
  43. 43.
    K. R. Tindall, J. Stein and E Hutchinson: Changes in DNA Base Sequence Induced by Gamma-Ray Mutagenesis of Lambda Phage and Prophage. Genetics 118: 551–560 (1988).PubMedGoogle Scholar
  44. 44.
    Y. Kuchino, F. Mori, H. Kasai, H. Inoue, S. Iwai, K. Miura, E. Ohtsuka and S. Nishimura: Misreading of DNA Templates Containing 8-hydroxydeoxyguanosine at the Modified Base and at Adjacent Residues. Nature 327: 77–79 (1987).PubMedCrossRefGoogle Scholar
  45. 45.
    M. J. Gait, Ed. Oligonucleotide Synthesis: A Practical Approach. IRL Press, Washington, D.C. (1984).Google Scholar
  46. 46.
    M. Beer, S. Stern, D. Carmalt and K. H. Muhlhenrich: Determination of Base Sequence in Nucleic Acids with the Electron Microscope. V The Thymine-Specific Reactions of Osmium Tetroxide with Deoxyribonucleic Acid and its Components. Biochemistry 5: 2283–2288 (1966).PubMedCrossRefGoogle Scholar
  47. 47.
    G. C. Walker and O. C. Uhlenbeck: Stepwise Enzymatic Oligonucleotide Synthesis Including Modified Nucleotides. Biochemistry 14: 817–824 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    C. A. Brennan and R. I. Gumport: T4 RNA Ligase Catalyzed Synthesis of Base- Analogue-Containing Oligodeoxyribonucleotides and Characterization of Their Thermal Stabilities. Nucleic Acids Res. 13: 8665–8684 (1985).PubMedCrossRefGoogle Scholar
  49. 49.
    A. Lovelace: Possible Relevance of O-6 Alkylation of Deoxyguanine to the Mutagenicity and Carcinogenicity of Nitrosamines and Nitroamides. Nature (London) 233: 206–207 (1969).CrossRefGoogle Scholar
  50. 50.
    P. K. Gupta, D. L. Johnson, T. M. Reid, M. S. Lee, L. J. Romano and C. M. King: Mutagenesis by Single Site-Specific Arylamine-DNA Adducts. J. Biol. Chem. 264: 20120–20130 (1989).PubMedGoogle Scholar
  51. 51.
    J. Kemmink, R. Bodens, T.M.G. Koning, R. Kaptein, G.A. van der Marel and J.H. van Boom: Conformational Changes in the Oligonucleotide Duplex d(GCGTTGCG).d(CGCAACGC) Induced by Formation of a cis-syn Thymine Dimer. Eur. J. Chem. 162: 37–43 (1987).Google Scholar
  52. 52.
    E Rouet and J. M. Essigmann: Possible Role of Thymine Glycol in the Selective Inhibition of DNA Synthesis in Oxidized DNA Thmplates. Cancer Res. 45: 6113–6118 (1985).PubMedGoogle Scholar
  53. 53.
    A. K. Basu, E. L. Loechler, S. A. Leadon and J. M. Essigmann: Genetic Effects of Thymine Glycol: Site-Directed Mutagenesis and Molecular Modeling Studies. Proc. Natl. Acad. Sci. USA 86: 7677–7681 (1989).PubMedCrossRefGoogle Scholar
  54. 54.
    A. M. Duplaa, A. Guy and R. Téoule: Measurement of the Radiosensitivity of a Radiation-Induced Adenine Defect in a Single Stranded DNA Chain. Radiat. Environ. Biophys. 28: 169–176 (1989).PubMedCrossRefGoogle Scholar
  55. 55.
    R. B. Setlow: Repair Deficient Human Disorders and Cancer. Nature (London) 271: 713–717 (1978).CrossRefGoogle Scholar
  56. 56.
    L. A. Loeb. Apurinic Sites as Mutagenic Intermediates. Cell 40: 483–484 (1985).PubMedCrossRefGoogle Scholar
  57. 57.
    T. Lindahl: DNA Glycosylases, Endonucleases for Apurine/Apyrimidine Sites and Base-Excision Repair. Progr. Nucleic Acids Res. Molec. Biol. 22: 135–192 (1979).CrossRefGoogle Scholar
  58. 58.
    K. Frenkel, K. Chrzan, W. Troll, G. W. Teebor and J. J. Steinberg: Radiation-Like Modification of Bases in DNA Exposed to Tùmor Promoter-Activated Polymorphonuclear Leukocytes. Cancer Res. 46: 5533–5540 (1986).PubMedGoogle Scholar
  59. 59.
    H. Ide, Y. W. Kow and S. S. Wallace: Thymine Glycols and Urea Residue on M13 DNA Constitutes Replicative Block in vitro. Nucleic Acids Res. 13: 8035–8052 (1985).PubMedCrossRefGoogle Scholar
  60. 60.
    M. Clark and G. Beardsley: Functional Effects of cis Thymine Glycol Lesions on DNA Synthesis in vitro. Biochemistry 26: 5398–5403 (1987).PubMedCrossRefGoogle Scholar
  61. 61.
    T. Friedmann and D. M. Brown: Base-Specific Reactions Useful for DNA Sequencing: Methylene Blue–Sensitized Photo-Oxidation of Guanine and Osmium Tetraoxide Modification of Thymine. Nucleic Acids Res. 5: 615–622 (1978).PubMedCrossRefGoogle Scholar
  62. 62.
    A. M. Maxam and W. Gilbert: Sequencing End-Labeled DNA with Base-Specific Chemical Cleavages. Methods Enzymol. 65: 499–560 (1980).PubMedCrossRefGoogle Scholar
  63. 63.
    R. C. Hayes and J. E. LeClerc: Sequence Dependence for Bypass of Thymine Glycols in DNA by DNA Polymerase I. Nucleic Acids Res. 14: 1045–1061 (1986).PubMedCrossRefGoogle Scholar
  64. 64.
    J. S. Taylor and C. L. O’Day: Cis-syn Thymine Dimer Are not Absolute Blocks to Replication by DNA Polymerase I of Escherichia coli in vitro. Biochemistry 29: 1624–1632 (1990).PubMedCrossRefGoogle Scholar
  65. 65.
    J. M. Clark, N. Pattaberaman, W. Taurs and G. P. Beardsley: Modeling and Molecular Mechanical Studies of the cis Thymine Glycol Radiation Damage Lesion in DNA. Biochemistry 26: 5404–5409 (1987).PubMedCrossRefGoogle Scholar
  66. 66.
    J. L. Rippen: The Crystal and Molecular Structures of Reaction Products from Gamma-Irradiation of Thymine and Cytosine:cis-thymine Glycol, C5H8N2O4, and Tians-1-carbamoyl-imidazilidone-4,5diol, C4H7N3O4. Acta Cryst. Chem. Cyst. Chem. B29: 1756–1762 (1973).Google Scholar
  67. 67.
    S. Y. Wang, Ed. Photochemistry and Photobiology of Nucleic Acids, Vols. 1 and 2. Academic Press, New York (1976).Google Scholar
  68. 68.
    F. Hutchinson: A Review of Some lbpics Concerning Mutagenesis by Ultraviolet Light. Photochem. Photobiol. 45: 897–903 (1987).PubMedCrossRefGoogle Scholar
  69. 69.
    D. E. Brash: UV Mutagenic Photoproducts in Escherichia coli and Human Cells: A Molecular Genetics Perspective on Human Skin Cancer. Photochem. Photobiol. 48: 59–66 (1988).PubMedCrossRefGoogle Scholar
  70. 70.
    W. A. Franklin and W A. Haseltine: The Role of the (6–4) Photoproduct in Ultraviolet Light-Induced Transition Mutations in E. coli. Mutat. Res. 165: 1–7 (1986).PubMedGoogle Scholar
  71. 71.
    H. E. Johns, M. L. Pearson, J. C. LeBlanc and C. W. Helleiner: The Ultraviolet Photochemistry of Thymidylyl-(3’-5’) Thymidine. J. Mol. Biol. 9: 503–524 (1964).PubMedCrossRefGoogle Scholar
  72. 72.
    J. S. Taylor, H.-F. Lu and J. J. Kotyk: Quantitative Conversion of the (6–4) Photoproduct of TpdC to its Dewar Valence Isomer Upon Exposure to Simulated Sunlight. Photochem. Photobiol. 51: 161–167 (1990).PubMedCrossRefGoogle Scholar
  73. 73.
    J. S. Taylor, D. S. Garrett and M. P. Cohrs: Solution-State Structure of the Dewar Pyrimidinone Photoproduct of Thymidylyl-(3“-5”)Thymidine. Biochemistry 27: 7206–7215 (1988).PubMedCrossRefGoogle Scholar
  74. 74.
    J. S. Taylor and I. R. Brockie: Synthesis of a Trans-syn Thymine Building Block. Solid Phase Synthesis of CGTAT[t,s]TATGC. Nucleic Acids Res. 16: 5123–5136 (1988).PubMedCrossRefGoogle Scholar
  75. 75.
    N. Rao, J. W. Keepers and P. Kollman: The Structure of d(CGCGAATTCGCG): The Incorporation of a Thymine Photodimer into a B-DNA Helix. Nucleic Acids Res. 12: 4789–4807 (1984).PubMedCrossRefGoogle Scholar
  76. 76.
    D. A. Pearlman, S. R. Holbrook, D. H. Pirkle and S. H. Kim: Molecular Models for DNA Damaged by Photoreaction. Science 227: 1304–1308 (1985).PubMedCrossRefGoogle Scholar
  77. 77.
    I. Husain, J. Griffith and A. Sancar: Thymine Dimers Bend DNA. Proc. Natl. Acad. Sci. USA 85: 2558–2562 (1988).PubMedCrossRefGoogle Scholar
  78. 78.
    G. Raghunathan, T Kieber-Emmons, R. Rein and J. L. Alderfer: Conformational Features of DNA-Containing cis-syn Photodimer. J. Biomol. Struct. Dyn. 7: 899–913 (1990).PubMedGoogle Scholar
  79. 79.
    J. S. Taylor, I. R. Brockie and C. L. O’Day: A Building Block for the Sequence-Specific Introduction of cis-syn Thymine Dimers into Oligonucleotides. Solid-Phase Synthesis of TpT[c,s]pTpT. J. Am. Chem. Soc. 109: 6735–6742 (1987).CrossRefGoogle Scholar
  80. 80.
    G. L. Chan, P. W. Doetsch and W. A. Haseltine: Cyclobutane Pyrimidine Dimers and (6–4) Photoproducts Block Polymerization by DNA Polymerase I. Biochemistry 24: 5723–5728 (1985).PubMedCrossRefGoogle Scholar
  81. 81.
    K. L. Larson and B. S. Strauss: Influence of Template Standedness on in vitro Replication of Mutagen-Damaged DNA. Biochemistry 20: 2471–2479 (1987).CrossRefGoogle Scholar
  82. 82.
    D. O’Connor and G. Stöhrer: Site-Specifically Modified Oligodeoxyribonucleotides as Templates for Eschericia coli DNA Polymerase I. Proc. Nate Acad. Sci. USA 82: 2325–2329 (1985).CrossRefGoogle Scholar
  83. 83.
    M. L. Michaels, D. L. Johnson, J. M. Reed, C. M. King and L. J. Romano: Evidence for in vitro Ttanslesion DNA Synthesis Past a Site-Specific Aminofluorene Adduct. J. Biol. Chem. 262: 14648–14654 (1987).PubMedGoogle Scholar
  84. 84.
    R. D. Kuchta, V. Mizrahi, P. A. Benkovic, K. A. Johnson and S. J. Benkovic: Kinetic Mechanism of DNA Polymerase I (Klenow). Biochemistry 26: 8410–8417 (1987).PubMedCrossRefGoogle Scholar
  85. 85.
    S. K. Banerjee, R. B. Christensen, C. W. Lawrence and J. E. LeClerk: Frequency and Spectrum of Mutations Produced by a Single cis-syn Thymine Thymine Cyclobutane Dimer in a Single-Stranded Vector. Proc. Natl. Acad. Sci. USA 85: 8141–8145 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Nicholas E. Geacintov
    • 1
  • Charles E. Swenberg
    • 2
  1. 1.Chemistry Department and Radiation and Solid State LaboratoryNew York UniversityNew YorkUSA
  2. 2.Radiation Biochemistry DepartmentArmed Forces Radiobiology Research InstituteBethesdaUSA

Personalised recommendations