Structure-Function Relations in Radiation Damaged DNA

  • Roman Osman
  • Karol Miaskiewicz
  • Harel Weinstein
Part of the Basic Life Sciences book series (BLSC, volume 58)


The most important biological effects of exposure to ionizing radiation can be related to a variety of changes in cell function. Some of these changes can produce cell death, but others lead to less final deleterious effects such as carcinogenesis or altered cell function as a result of energy deposition in the biological system. All the changes in cell function can be linked to DNA damage, with the double-strand break and the radiation-induced mutations causing most of the lethal damage. Increasingly more accurate and direct measurements in radiation dosimetry, as discussed at this Conference, and the understanding provided by the theories and formulations of condensed matter physics, also presented and discussed at great length at this meeting, have offered important insight into the parameters and measurable outcomes of exposure to ionizing radiation. These are enhanced by findings, such as those presented at this Conference by Clemens von Sonntag, that emerge from radiochemistry measurements in vitro of chemical changes produced by radiation exposure. Also as described at this conference by Aloke Chatterjee and Herwig Paretzke, computational simulations based on Monte Carlo algorithms have been developed to explore the parameters of the energy deposition processes and their consequences in models of the biological systems. But a clear, mechanistic link between the physical processes and the biological consequences remains somewhat elusive, suggesting that it will be necessary to know and understand first the sequence of events that lead from energy deposition of radiation in condensed matter to the biophysical and biochemical processes that occur at the level of cellular DNA.


Conformational Change Molecular Dynamic Simulation Radical Cation Strand Break Radiation Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. von Sonntag. The Chemical Basis of Radiation Biology. Taylor liu Francis, London (1987).Google Scholar
  2. 2.
    S. Das, D. J. Deeble, M.-N. Schuchmann and C. von Sonntag. Pulse Radiolytic Studies on Uracil and Uracil Derivatives. Protonation of Their Electron Adducts at Oxygen and Carbon. Int. J. Radiat. Biot 46: 7–9 (1984).CrossRefGoogle Scholar
  3. 3.
    M.C.R. Symons. ESR Spectra for Protonated Thymine and Cytidine Radical Anions: Their Relevance to Irradiated DNA. Int. J. Radiat. Biol. 58: 93–96 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    S. Steenken. Purine Bases, Nucleosides, and Nucleotides: Aqueous Solution Redox Chemistry and Transformation Reactions of their Radical Cations End e-and OH Adducts. Chem. Rev. 89: 503–520 (1989).CrossRefGoogle Scholar
  5. 5.
    G. Scholes, G. Stein and J. Weiss. Action of X-rays on Nucleic Acids. Nature (Lond.) 164: 709–710 (1949).CrossRefGoogle Scholar
  6. 6.
    J. F. Ward and I. Kuo. Strand Breaks, Base Release and Postirradiation Changes in DNA y-irradiated in Dilute 02–saturated Aqueous Solution. Radiat. Res. 66: 485–498 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    H. P. Leenhouts and K. H. Chadwick. The Crucial Role of DNA Double-Strand Breaks in Cellular Radiobiological Effects. Adv. Radiat. Biol. 7: 55–101 (1978).Google Scholar
  8. 8.
    D. Frankenberg, M. Frankenberg-Schwager, D. Blocher and R. Harbich. Evidence for DNA Double-Strand Breaks as the Critical Lesions in Yeast Cells Irradiated with Sparsely or Densely Ionizing Radiation Under Oxic or Anoxic Conditions. Radiat. Res. 88: 524–532 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    S. E. Bresler, L. A. Noskin and A. V. Suslov. Induction by Gamma Irradaition of Double-Strand Breaks of Escherichia Coli Chromosomes and Their Role in Cell Lethality. Biophys. J. 45: 749–754 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    I. R. Radford. The Level of Induced DNA Double-Strand Breakage Correlates with Cell Killing After X-irradiation. Int. J. Radiat. Biol. 48: 45–54 (1985).CrossRefGoogle Scholar
  11. 11.
    C. J. Roberts and P. D. Holt. Induction of Chromosome Abberation and Cell Killing in Syrian Hamster Fibroblasts by y-rays, X-rays and Neutrons. Int J. Radiat. Bio!. 48: 927–939 (1985).CrossRefGoogle Scholar
  12. 12.
    D. C. Lloyd. Comment on the Paper by Roberts and Holt. Int. J. Radiat. Bio!. 48: 940–942 (1985).Google Scholar
  13. 13.
    J. F. Ward. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. Frog. Nuc. Acid Res. Mol. Biol. 35: 95–125 (1988).CrossRefGoogle Scholar
  14. 14.
    R. Osman, W. J. Clark, A. P. Mazurek, and H. Weinstein. Theoretical Studies of Molecular Mechanisms of DNA Damage Induced by Hydroxyl Radicals. Free Rad. Res. Comms. 6: 131–132 (1989).CrossRefGoogle Scholar
  15. 15.
    L. Pardo, A. P. Mazurek and R. Osman. Computational Models for Proton Transfer in Biological Systems. Int. J. Quantum Chem. 37: 701–711 (1989).CrossRefGoogle Scholar
  16. 16.
    L. Pardo, R. Osman, J. Banfelder, A. P. Mazurek, and H. Weinstein. Molecular Mechanisms of Radiation Induced DNA Damage: H-abstraction and p-cleavage. Free Rad. Res. Comms. 12: 461–463 (1991).CrossRefGoogle Scholar
  17. 17.
    H. Weinstein and R. Osman. Molecular Biophysics of Specificity and Function in Enzymes, Receptors and Calcium Binding Proteins. In Theoretical Biochemistry and Molecular Biophysics: A Comprehensive Survey, D. L. Beveridge and R. Lavery, ed., pp. 275–289. Adenine Press, New York (1990).Google Scholar
  18. 18.
    H. Weinstein and R. Osman. On the Structural and Mechanistic Basis of Function, Classification and Ligand Design for 5–HT Receptors. Neuropsychophamiacol. 3 (5–6): 397–409 (1990).Google Scholar
  19. 19.
    H. Weinstein, R. Osman, G. A. Mercier, A. P. Mazurek, L. Pardo, and L. A. Rubenstein. Theory and Computation of Molecular Mechanisms in Biological Processes: Radiation-Induced Damage to DNA and Neurotransmitter Receptor Function. In Computer Assisted Analysis and Modeling on the IBM 3090, H. U. Brown, ed., pp. 629–673. MIT Press, Boston (1990).Google Scholar
  20. 20.
    H. Weinstein and J. P. Green. Quantum Chemistry in Biomedical Sciences. Ann. N.Y. Acad. Sci., 367 (1981).Google Scholar
  21. 21.
    E. Clementi, ed. Modem Techniques in Computional Chemistry: MOTECC-89. ESCOM, The Netherlands (1989).Google Scholar
  22. 22.
    E. Clementi, ed. Modem Techniques in Computional Chemistry: MOTECC-90. ESCOM, The Netherlands (1990).Google Scholar
  23. 23.
    B. Venkataraghavan and R. J. Feldmann. Macromolecular Structure and Specificity: Computer-Assisted Modeling and Applications. Ann. N.Y. Acad. Sci. 439 (1985).Google Scholar
  24. 24.
    E. Clementi and R. H. Sarma. Structure and Dynamics: Nucleic Acids and Proteins. Adenine Press, New York (1983).Google Scholar
  25. 25.
    E. Clementi, G. Corongiu, and R. H. Sarma. Structure and Motion: Membranes, Nucleic Acids and Proteins. Adenine Press, Guilderland, New York (1985).Google Scholar
  26. 26.
    C. L. Brooks, M. Karplus, and B. M. Pettitt. Proteins: A Theoretical Perspective of Dynamics, Structure, and their Thermodynamics; John Wiley liu Sons: New York (1988).Google Scholar
  27. 27.
    J. A. McCammon and S. C. Harvey. Dynamics of Proteins and Nucleic Acids. Cambridge University Press, New York (1987).Google Scholar
  28. 28.
    W. G. Richards. Computer Aided Molecular Design. IBC Technical Services, Ltd., London (1989).Google Scholar
  29. 29.
    W. F. van Gunsteren and P. K. Weiner. Computer Simulation of Biomolecular Systems. ESCOM, Leiden, The Netherlands (1989).Google Scholar
  30. 30.
    U. C. Singh and P. A. Kollman. An Approach to Computing Electrostatic Charges for Molecules. J. Comp. Chem. 5: 129–145 (1984).CrossRefGoogle Scholar
  31. 31.
    W. Saenger. Principles of Nucleic Acid Structure. Springer-Verlag, New York (1983).Google Scholar
  32. 32.
    R. Osman, K. Namboodiri, H. Weinstein, and J. R. Rabinowitz. Reactivities of Acrylic and Methacrylic Acids in a Nucleophilic Addition Model of Their Biological Activities. J. Amer. Chem. Soc. 110: 1701–1707 (1988).CrossRefGoogle Scholar
  33. 33.
    M. T. Carrol, J. R. Cheeseman, R. Osman, and H. Weinstein. Nucleophilic Addition to Activated Double Bonds: Predictions of Reactivity from the Laplacian of Charge Densities. J. Phys. Chem. 93: 5120–5123 (1989).CrossRefGoogle Scholar
  34. 34.
    J. P. Dijkman, R. Osman, and H. Weinstein. A Theoretical Study of the Effect of Primary and Secondary Structure Elements on the Proton Transfer in Papain. Int. J. Quantum Chem. 35: 241–252 (1989).CrossRefGoogle Scholar
  35. 35.
    K Hori, J. N. Kushick, and H. Weinstein. Structural and Energetic Parameters of Caz+ Binding to Peptides and Proteins. Biopolymers 27: 1865–1886 (1988).PubMedCrossRefGoogle Scholar
  36. 36.
    G. A. Mercier, R. Osman, and H. Weinstein. Role of Primary and Secondary Protein Structure in Neurotransmitter Activation Mechanisms. Protein Eng. 2: 261–270 (1988).PubMedCrossRefGoogle Scholar
  37. 37.
    G. A. Mercier, J. P. Dijkman, R. Osman, and H. Weinstein. Effects of Macromolecular Environments on Proton Transfer Processes: The Calculation of Polarization. In Quantum Chemistry; Basic Aspects, Actual Trends, R. Garbo, ed., pp. 577–596. Elsevier Scientific Publ., Amsterdam (1989).Google Scholar
  38. 38.
    G. A. Mercier, R. Osman, and H. Weinstein. A Molecular Theoretical Model of Recognition and Activation of a 5–HT Receptor. In Computer Assisted Modeling of Receptor - Ligand Interactions, R. Rein and A. Golombek, ed., pp. 399–410. Alan R. Liss Publ., New York (1989).Google Scholar
  39. 39.
    L. Pardo, A. P. Mazurek, R. Osman, and H. Weinstein. Theoretical Studies of the Activation Mechanism of Histamine H2–Receptors. Dimaprit and the Receptor Model. Int. J. Quantum Chem. QBS16: 281–290 (1989).Google Scholar
  40. 40.
    H. Weinstein, R. Osman, and G. Mercier. Recognition and Activation of a 5–HT Receptor by Hallucinogens and Indole Derivatives. In NIDA Research Monograph 90, Proc. 50th Ann. Meet. Problems of Drug Dependence, L. S. Harris, ed., pp. 243–255. US-HHS, NIDA, Maryland (1988).Google Scholar
  41. 41.
    H. Weinstein and R. Osman. Interaction Mechanisms at Biological Targets: Implications for Design of Serotonin Receptor Ligands. In Computer-Aided Molecular Design, W. G. Richards, ed., pp. 105–108. IBC Technical Services, London (1989).Google Scholar
  42. 42.
    H. Weinstein and R. Osman. Simulations of Ligand-Receptor Interactions as Guides for Design. In Frontiers in Drug Research, Alfred Benzon Symposium 28, B. Jensen, F. S. Jorgenson, and H. Kofod, ed., pp. 169–182. Munksgaard, Copenhagen (1989).Google Scholar
  43. 43.
    H. Weinstein, K. Hori, J. N. Kushick, F. Sussman, and A. Factor. Computer Simulation Studies of Structure-Function Relations in Calcium-Binding Proteins. In Proc. 4th Intl. Conf. Supercomputing Intl., L. P. Kartashev and S. I. Kartashev, ed., pp. 106–108. Supercomputing Inst. Inc. (1989).Google Scholar
  44. 44.
    T. A. Steitz. Structural Studies of Protein-Nucleic Acid Interaction: the Sources of Sequence-specific Binding. Quarterly Reviews of Biophys. 23: 205–280 (1990).CrossRefGoogle Scholar
  45. 45.
    Y. Kim, J. C. Grable, and R. Love. Refinement of Eco RI Endonuclease Crystal structure. Science 249: 1307–1310 (1990).PubMedCrossRefGoogle Scholar
  46. 46.
    A. K. Aggarwal, D. W. Rodgers, M. Drottar, M. Ptashne, and C. Harrison. Recognition of a DNA Operator by the Repressor of Phage 434: A View at High Resolution. Science 242: 899–907 (1988).PubMedCrossRefGoogle Scholar
  47. 47.
    S. R. Jordan and C. O. Pabo. Structure of the Lambda Complex at 2.5 A Resolution: Details of the Repressor-Operator Interactions. Science 242: 893–899 (1988).PubMedCrossRefGoogle Scholar
  48. 48.
    J. A. McClarin, C. A. Frederick, B. C. Wang, P. Greene, H. W. Boyer, J. Grable, and J. M. Rosenberg. Structure of the DNA-Eco RI Endonuclease Recognition Complex at 3 A Resolution. Science 234: 1526–1541 (1986).PubMedCrossRefGoogle Scholar
  49. 49.
    C. O. Pabo, A. K. Aggarwal, S. R. Jordan, L. J. Beamer, U. R. Obeysekare, and S. C. Harrison. Conserved Residues Make Similar Contacts in Two Repressor-Operator Complexes. Science 247: 1208–1214 (1990).CrossRefGoogle Scholar
  50. 50.
    C. Wolberger, Y. Dong, M. Ptashne, and S. C. Harrison. Structure of a Phage 434 Cro/DNA Complex. Nature 335: 789–795 (1988).PubMedCrossRefGoogle Scholar
  51. 51.
    M. Ptashne. Gene Regulation by Proteins Acting Nearby and at a Distance. Nature 322: 697–701 (1986).PubMedCrossRefGoogle Scholar
  52. 52.
    M. Ptashne. How Eukaryotic Transcriptional Activators Work. Nature 335: 683–689 (1988).PubMedCrossRefGoogle Scholar
  53. 53.
    O. K. Snyder, J. F. Thompson, and A. Landy. Phasing of Protein-Induced DNA Bends in a Recombination Complex. Nature 341: 255–258 (1989).PubMedCrossRefGoogle Scholar
  54. 54.
    S. D. Goodman and H. A. Nash. Functional Replacement of a Protein-Induced Bend in a DNA Recombination Site. Nature 341: 251–254 (1989).PubMedCrossRefGoogle Scholar
  55. 55.
    J. Ramstein and R. Lavery. Energetic Coupling Between DNA Bending and Base Pair Opening. Proc. Natl. Acad. Sci. USA 85: 7231–7235 (1988).PubMedCrossRefGoogle Scholar
  56. 56.
    H. Martin-Bertram, P. Hartl, and C. Winkler. Unpaired Bases in Phage DNA After Gamma-Irradiation In-situ and In-vitro. Radiat. Environ. Biophys. 23: 95 (1984).PubMedCrossRefGoogle Scholar
  57. 57.
    J. Andrews, H. Martin-Bertram, and U. Hagen. S1 Nuclease-Sensitive Sites in Yeast DNA: An Assay for Radiation-Induced Base Damage. Int. J. Radiat. Bio!. 45: 497 (1984).CrossRefGoogle Scholar
  58. 58.
    D. Deeble, D. Schultz, and C. von Sonntag. Reactions of OH Radicals with Poly (U) in Deoxygenated Solutions: Sites of OH Radical Attack and the Kinetics of Base Release. Int. J. Radiat. Biol. 49: 915 (1986).CrossRefGoogle Scholar
  59. 59.
    D. J. Deeble and C. von Sonntag. y-Radiolysis of Poly(U) in Aqueous Solution. The Role of Primary Sugar and Base Radicals in the Release of Undamaged Uracil. Int. J. Radiat. Biol. 46: 247–260 (1984).CrossRefGoogle Scholar
  60. 60.
    D. J. Deeble and C. von Sonntag. Radiolysis of Poly(U) in Oxygenated Solutions. Int. J. Radiat. Biol. 49: 927–936 (1986).CrossRefGoogle Scholar
  61. 61.
    C. R. Paul, J. C. Wallace, J. L. Alderfer, and H. C. Box. Radiation Chemistry of d(TpApCpG) in Oxygeneated Solution. Int. J. Radiat. Biol. 54: 403–415 (1988).PubMedCrossRefGoogle Scholar
  62. 62.
    T. Lindahl. DNA Glycosylases, Endonucleases, and Base-Excision Repair. Frog. NucL Acids Res. Mol. BioL 22: 135–190 (1979).CrossRefGoogle Scholar
  63. 63.
    G. Teebor, R. Boorstein, and J. Cadet. Repairability of Oxidative Free Radical-Mediated Damage to DNA: A Review. Int. J. Radiai. Biol. 54: 131–150 (1988).CrossRefGoogle Scholar
  64. 64.
    W. A. Deutsch and S. Linn. DNA Binding Activity from Cultured Human Fibroblasts That is Specific for Partially Depurinated DNA and That Inserts Purines into Apurinic Sites. Proc. Natl. Acad. Sci. USA 76: 141–146 (1979).PubMedCrossRefGoogle Scholar
  65. 65.
    L. A. Loeb and B. D. Preston. Mutagenesis by Apurinic/Apyrimidinic Sites. Ann. Rev. Genetics 20: 201–230 (1986).CrossRefGoogle Scholar
  66. 66.
    D. Sagher and B. Strauss. Insertion of Nucleotides Opposite Apurinic/Apyrimidinic Sites in Deoxyribonucleic Acid During in vitro Synthesis: Uniqueness of Adenine Nucleotides. Biochemistry 22: 4518–4526 (1983).PubMedCrossRefGoogle Scholar
  67. 67.
    A. Gentil, A. Margot, and A. Sarasin. Apurinic Sites Cause Mutations in Simian Virus 40. Mutat. Res. 129: 141–147 (1984).PubMedGoogle Scholar
  68. 68.
    K. Hildenbrand and D. Schulte-Frohlinde. E.S.R. Studies on the Mechanism of Hydroxyl Radical Induced Strand Breakage of Polyuridilic Acid. Int. J. Radiat. Biol. 55: 725–738 (1989).PubMedCrossRefGoogle Scholar
  69. 69.
    K. Hildenbrand and D. Schulte-Frohlinde. ESR Studies on the Mechanism of OH-Induced Strand Breakage in Poly(U). Free Radical Res. Commun. 6: 137–138 (1989).CrossRefGoogle Scholar
  70. 70.
    S. Fujita and S. Steenken. Pattern of OH Radical Addition to Uracil and Methyl-and Carboxyl-Substituted Uracils. Electron Transfer of OH Adducts with N,N,N’,N’-Tetramethyl-pphenylenediamine and Tetranitromethane. J. Am. Chem. Soc. 103: 2540–2545 (1981).CrossRefGoogle Scholar
  71. 71.
    C. von Sonntag. The Chemistry of Free-Radical-Mediated DNA Damage, This Proceedings.Google Scholar
  72. 72.
    A. A. Shaw and J. Cadet. Radical Combination Processes Under the Direct Effects of Gamma Radiation on Thymidine. J. Chem. Soc., Perkin Trans. 2,in press.Google Scholar
  73. 73.
    H.-P. Schuchmann, D. J. Deeble, G. Olbrich, and C. von Sonntag. The SO4 Induced Chain Reaction of 1,3–dimethyluracil with Peroxidosulfate. Int. J. Radiat. Biol. 51: 441–453 (1987).CrossRefGoogle Scholar
  74. 74.
    A. Rashin. Hydration Phenomena, Classical Electrostatics, and the Boundary Element Method. J. Phys. Chem. 94: 1725–1733 (1990).CrossRefGoogle Scholar
  75. 75.
    J. Srinivasan, J. M. Withka, and D. L. Beveridge. Molecular Dynamics of an in vacuo Model of Duplex d(CGCGAATTCGCG) in the B-form Based on the Amber 3.0 Force Field. Biophys. J. 58: 533–547 (1990).PubMedCrossRefGoogle Scholar
  76. 76.
    H. R. Drew, R. M. Wing, T. Takano, S. Broka, S. Tanaka, K. Itakura, and R. E. Dickerson. Structure of a B-DNA Dodecamer: Conformation and Dynamics. Proc. Nat. Acad. Sci (USA) 78: 2179–2183 (1981).CrossRefGoogle Scholar
  77. 77.
    U. C. Singh, P. K. Weiner, J. Caldwell, and P. A. Kollman. AMBER 3.0. University of California, San Francisco, California (1986).Google Scholar
  78. 78.
    D.G.E. Lemaire, E. Bothe, and D. Schulte-Frohlinde. Yields of Radiation-Induced Main Chain Scission of Poly U in Aqueous Solution: Strand Break Formation Via Base Radicals. Int. J. Radiat. Biol. 45: 351–358 (1984).CrossRefGoogle Scholar
  79. 79.
    D. Schulte-Frohlinde and E. Bothe. Identification of a Major Pathway of Strand Break Formation in Poly-U Induced by OH Radicals in Presence of Oxygen. Z. Naturforsch. 39c: 315–319 (1984).Google Scholar
  80. 80.
    E. Bothe, G. Behrens, E. Bohm, B. Sethuram, and D. Schulte-Frohlinde. Hydroxyl Radical Induced Strand Break Formation of Poly(U) in the Presence of Oxygen. Comparison of the Rates as Determined by Conductivity, ESR and Rapid-Mix Experiments with a Thiol. Int. J. Radial. BioL 49: 57–66 (1986).CrossRefGoogle Scholar
  81. 81.
    D.G.E. Lemaire, E. Bothe, and D. Schulte-Frohlinde. Hydroxyl Radical Induced Strand Break Formation of Poly(U) in Anoxic Solution. Effect of Dithiothreitol and Tetranitromethane. Int. J. Radiat. Biol. 51: 319–330 (1987).CrossRefGoogle Scholar
  82. 82.
    E. Bothe, M. Adinarayana, and D. Schulte-Frohlinde. Rate and Yield of OH-Induced Strand Break Formation of Polynucleotides and DNA. Free Radical Res. Commun. 6: 139 (1989).CrossRefGoogle Scholar
  83. 83.
    E. Bothe and D. Schulte-Frohlinde. Release of K+ and H+ from Poly U in Aqueous Solution upon y and Electron Irradiation. Rate of Strand Break Formation in Poly U. Z. Naturforsch. 37c: 1191–1204 (1982).Google Scholar
  84. 84.
    D. J. Deeble, M. N. Schuchman, S. Steenken, and C. von Sonntag. Direct Evidence for the Formation of Thymine Radical Cations from the Reaction of SO4’ with Thymine Derivatives: A Pulse Radiolysis Study with Optical and Conductance Detection. J. Phys. Chem. 94: 8186–8192 (1990).CrossRefGoogle Scholar
  85. 85.
    A. J. Bertinchamps, J. Huttermann, W. Kohnlein and R. Teoule. Effects of Ionizing Radiation on DNA. Springer, Berlin (1978).Google Scholar
  86. 86.
    G. Scholes. The Radiation Chemistry of Pyrimidines, Purines and Related Substances. In Photochemistry and Photobiology of Nucleic Acids, S. Y. Wang, ed., p. 521. Academic Press, New York (1976).Google Scholar
  87. 87.
    B. Rakvin and J. N. Herak. Localization of Radiation Energy in DNA. Radiat. Phys. Chem. 22: 1043 (1983).Google Scholar
  88. 88.
    B. Pullman and A. Pullman. Quantum Biochemistry. Interscience Publishers, New York (1963).Google Scholar
  89. 89.
    N. Bodor, M.J.S. Dewar, and A. J. Harget. Ground States of Conjugated Molecules. XIX. Tautomerism of Heteroaromatic Hydroxy and Amino Derivatives and Nucleotide Bases. J. Am. Chen. Soc. 92: 2929 (1970).CrossRefGoogle Scholar
  90. 90.
    H. Berthod, C. Giessner-Prettre, and A. Pullman. Theoretical Study of the Electronic Properties of the Purine and Pyrimidine Components of the Nucleic Acids. Theor. Chim. Acta 5: 53 (1966).CrossRefGoogle Scholar
  91. 91.
    P. J. Boon, P. M. Cullis, M. C. R. Symons, and B. W. Wren. Effects of Ionizing Radiation on Deoxyribonucleic Acid and Related Systems. Part I. The Role of Oxygen. J. Chem. Soc. Perkin Trans. II: 1393–1399 (1984).Google Scholar
  92. 92.
    L. P. Candeias and S. Steenken. Structure and Acid-Base Properties of One-Electron-Oxidized Deoxyguanosine, Guanosine, and 1–methylguanosine. J. Am. Chem. Soc. 111: 1094–1099 (1989).CrossRefGoogle Scholar
  93. 93.
    A.J.S.C. Vieira and S. Steenken. Pattern of OH Radical Reaction with 6– and 9–Substituted Purines. Effect of Substituents on the Rates and Activation Parameters of the Unimolecular Transformation Reactions of Two Isomeric OH Adducts. J. Phys. Chem. 91: 4138–4144 (1987).CrossRefGoogle Scholar
  94. 94.
    P. O’Neill. Pulse Radiolytic Study of the Interaction of Thiols and Ascorbate with OFI Adducts of dGMP and dG: Implications for DNA Repair Processes. Radiat. Res. 96: 198 (1983).PubMedCrossRefGoogle Scholar
  95. 95.
    P. O’Neill, P. W. Chapman, and D. G. Papworth. Repair of Hydroxyl Radical Damage of dA by Antioxidants. Life Chem. Rep. 3: 62 (1985).Google Scholar
  96. 96.
    P. O’Neill and S. E. Davies. A Pulse Radiolytic Study of the Interaction of Nitroxyls with Free-radical Adducts of Purines: Consequences for Radiosensitization. Int. J. Radiat. Biol. 49: 937 (1986).CrossRefGoogle Scholar
  97. 97.
    M. K. Gilson and B. H. Honig. Calculation of Electrostatic Potentials in an Enzyme Active Site. Nature 330: 84–86 (1987).PubMedCrossRefGoogle Scholar
  98. 98.
    M.J.E. Sternberg, F.R.F. Hayes, A. J. Russell, P. G. Thomas, and A. R. Fersht. Prediction of Electrostatic Effects of Engineering of Protein Charges. Nature 330: 86–88 (1987).PubMedCrossRefGoogle Scholar
  99. 99.
    K. Soman, A. S. Yang, B. Honig, and R. Fletterick. Electrical Potentials in Trypsin Isozymes. Biochemistry 28: 9918–9926 (1989).PubMedCrossRefGoogle Scholar
  100. 100.
    E. L. Mehler and G. Eichele. Electrostatic Effects in Water-Accessible Regions of Proteins. Biochemistry 23: 3887–3891 (1984).CrossRefGoogle Scholar
  101. 101.
    L. R. Karam, M. Dizdaroglu, and M. G. Simic. Intramolecular H Atom Abstraction from the Sugar Moiety by Thymine Radicals in Oligo-and Polydeoxynucleotides. Radiat. Res. 116: 210–216 (1988).PubMedCrossRefGoogle Scholar
  102. 102.
    M. Adinarayana, E. Bothe, and D. Schulte-Frohlinde. Hydroxyl Radical-Induced Strand Break Formation in Single-Stranded Polynucleotides and Single-Stranded DNA in Aqueous Solution as Measured by Light Scattering and by Conductivity. Int. J. Radiat. Biol. 54: 723–737 (1988).PubMedCrossRefGoogle Scholar
  103. 103.
    O. Kennard and W. N. Hunter. Oligonucleotide Structure: A Decade of Results from Single Crystal X-ray Diffraction Studies. Quarterly Rev. Biophys. 22: 327–379 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Roman Osman
  • Karol Miaskiewicz
  • Harel Weinstein
    • 1
  1. 1.Department of Physiology and BiophysicsMount Sinai School of Medicine of the City University of New YorkNew YorkUSA

Personalised recommendations