The Radiobiological Significance of Spatial and Temporal Distribution of Energy Absorbed from Ionizing Radiations

  • Harald H. Rossi
Part of the Basic Life Sciences book series (BLSC, volume 58)


The cells of higher organisms respond in a non-linear fashion to the energy absorbed from ionizing radiation. However, there appears to be no indication of a dependence that is of a higher power than the square of the absorbed energy. This relatively simple alternative permits operational definitions of two types of injuries, termed lesions and sublesions, and a basic description in terms of dual radiation action. There are, however, various complicating factors and uncertainties. Further progress requires the development of a modified microdosimetry that incorporates energy transport, a more complete treatment of saturation and especially a specific identification of what is probably damage to DNA.


Energy Transport Lesion Formation Relative Biological Effectiveness Quadratic Dependence Proximity Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DS 86. Radiation Effects Research Foundation,Hiroshima (1987).Google Scholar
  2. 2.
    L. J. Goodman and M. Pearlman. Depth Dose Studies at the ORNL DOSAR Facility. U.S. Atomic Energy Commission, Washington, DC (1966).Google Scholar
  3. 3.
    H. H. Rossi. Limitation and Assessment in Radiation Protection. L.S. Taylor Lecture No. 8, NCRP, Bethesda, Maryland (1984).Google Scholar
  4. 4.
    E. L. Lloyd, M. A. Gemmell, C. B. Henning, D. S. Gemmell and B. J. Zabransky. Cell Survival Following Multiple-Hack Alpha Particle Irradiation. Int. J. Radiat. Biol. 35: 23–31 (1979).CrossRefGoogle Scholar
  5. 5.
    R. P. Bird, N. Rohrig, R. C. Colvett, C. R. Geard and S. Marino. Inactivation of Synchronized Chinese Hamster V-79 Cells with Charged Particle Back Segments. Radiat. Res. 82: 277 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    E. A. Blakely, F. Q. Ngo, S. B. Curtis and C. A. Ibbias. Heavy-Ion Radiobiology: Cellular Studies. Adv. in Rad. Biol. 11: 295, Academic Press (1984).Google Scholar
  7. 7.
    H. H. Rossi. Microdosimetry and Radiobiology. Radiat. Prot. Dosim. 13 (1–4): 259–265 (1985).Google Scholar
  8. 8.
    E. L. Powers, J. T. Lyman and C. A. Tbbias. Some Effects of Accelerated Charged Particles on Bacterial Spores. Int. J. Radiat. Biol. 14: 313–330 (1968).CrossRefGoogle Scholar
  9. 9.
    G. W. Barendsen. Mechanism of Action of Different Ionizing Radiations on the Proliferative Capacity of Mammalian Cell. Theoretical and Experimental Biophysics 1: 167 (1967).Google Scholar
  10. 10.
    P. W. Tbdd. Reversible and Irreversible Effects of Ionizing Radiations on the Reproductive Integrity of Mammalian Cells Cultured In Vitro. Thesis, University of California, Lawrence, Rad. Lab., UCRL 11614, Berkeley, California (1964).Google Scholar
  11. 11.
    A. M. Kellerer and D. Chmelevsky. Concepts of Microdosimetry III. Rad. Environ. Biophys. 12: 321 (1975).CrossRefGoogle Scholar
  12. 12.
    H. H. Rossi and M. Zaider. Saturation in Dual Radiation Action, Quantitative Mathem. Models in Radiat. Biot, 111–118 Springer, New York (1987).Google Scholar
  13. 13.
    D. Chmelevsky. Distributions et Moyennes des Grandeurs Microdosimetriques A L’Echelle Du Nanometre - Methodes De Calcul Et Resultats, Thesis, U de Tbulouse, France (1976).Google Scholar
  14. 14.
    O. Hug and A. M. Kellerer. Stochastik der Strahlenwirkung, Springer, New York (1966).CrossRefGoogle Scholar
  15. 15.
    J. L. Bateman, H. H. Rossi, A. M. Kellerer, C. V. Robinson and V. P. Bond. Dose-Dependence of Fast Neutron RBE for Lens Opacification in Mice. Radiat. Res. 51: 381–390 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    J. B. Storer, L. J. Serrano, E. B. Darden, Jr., M. C. Jerrigan and R. L. Ullrich. Life Shortening in RFM and Balb/c Mice as a Function of Radiation Quality. Dose and Dose Rate. Radiat. Res. 78: 122–161 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    H. H. Smith, H. H. Rossi and A. M. Kellerer. Relation Between Mutation Yield and Cell Lethality Over a Wide Range of X-ray and Fission Neutrons in Maize, Biological Effects of Neutron Radiation, IAIA (1974).Google Scholar
  18. 18.
    A. M. Kellerer and H. H. Rossi. The Theory of Dual Radiation Action. Curr. Topics Radiat. Res. Q. 8: 85–158 (1972).Google Scholar
  19. 19.
    H. H. Rossi and A. M. Kellerer. Biological Implications of Microdosimetry: I, Témporal Aspects. In Proc. 4th Symp. on Microdosimetry, ed. J. Booz, pp. 315–326, EUR 5122. Verbania Pallanza, Italy, Commission of the European Communities, Brussels (1973).Google Scholar
  20. 20.
    A. M. Kellerer and H. H. Rossi. A Generalized Formulation of Dual Radiation Action. Radiat. Res. 75: 471–488 (1978).CrossRefGoogle Scholar
  21. 21.
    H. H. Rossi. Biophysical Studies with Spatially Correlated Ions, 1, Background and Theoretical Considerations. Radiat. Res. 78: 185–291 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    A. M. Kellerer, Y-M. P. Lam and H. H. Rossi. Biophysical Studies with Spatially Correlated Ions, 4, Analysis of Cell Survival Data for Diatomic Deuterium. Radiat. Res. 83: 511–528 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Zaider and D. J. Brenner. The Application of Rack Calculations to Radiobiology, III Analysis of the Molecular Beam Experiment Results. Radiat. Res. 100: 213–221 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    D. T. Goodhead, J. Thacker and R. Cox. Effectiveness of 0.3 keV Carbon Ultrasoft X-rays for the Inactivation and Mutation of Cultured Mammalian Cells. Int. J. Radiat. Biol. 36: 101–114 (1979).CrossRefGoogle Scholar
  25. 25.
    D. J. Brenner and M. Zaider. Modification of the Theory of Dual Radiation Action for Attenuated Fields, II, Application to the Analysis of Soft X-ray Result. Radiat. Res. 99: 492–501 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    W. C. Roesch. Models of the Radiation Sensitivity of Mammalian Cells. In Proc. Third Symp. Neutron Dosimetry in Biology and Medicine, pp. 1–27. Commission of the European Communities, Brussels (1977).Google Scholar
  27. 27.
    K. H. Chadwick and H. P. Leenhouts. The Molecular Model for Cell Survival Following Radiation. In The Molecular Theory of Radiation Biology, pp. 25–50. Springer-Verlag, New York (1981).CrossRefGoogle Scholar
  28. 28.
    C. A. Tbbias. The Repair-Misrepair Model in Radiobiology: Comparison to Other Models. Radiat. Res. Suppl., 8:104, S-77 (1985).Google Scholar
  29. 29.
    S. B. Curtis. Lethal and Potentially Lethal Lesions Induced by Radiation - A Unified Repair Model. Radiat. Res. 106: 252 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    W. Sontag. A Cell Survival Model with Saturable Repair After Irradiation. Radiat. Environ. Biophys. 26: 63 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    D. Harder. Pairwise Lesion Interaction - Extension and Confirmation of Lea’s Model. In Proc. Eighth Int. Congr. Radiation Research, p. 318, Edinburgh. Taylor and Francis, New York (1987).Google Scholar
  32. 32.
    M. Zaider and H. H. Rossi. Indirect Effects in Dual Radiation Action. Radiat. Phys. Chem. 32: 143–148 (1988).Google Scholar
  33. 33.
    M. Zaider and H. H. Rossi. Saturation Effects for Sparsely Ionizing Particles. DOE Progress Report 10/1/79–9/30/80, Tèchnical Information Center, U.S. Department of Energy, Oak Ridge, Tènnessee (1980).Google Scholar
  34. 34.
    A. M. Kellerer, E. J. Hall, H. H. Rossi and P. Media. RBE as a Function of Neutron Energy II, Statistical Analysis. Radiat. Res. 65: 172–186 (1976).PubMedCrossRefGoogle Scholar
  35. 35.
    E. J. Hall, W. Gross, R. F. Dvorak, A. M. Kellerer and H. H. Rossi. Survival Curves and Age Response Functions for Chinese Hamster Cells Exposed to X-rays or High LET Alpha Particles. Radiat. Res. 52: 88–98 (1972).PubMedCrossRefGoogle Scholar
  36. 36.
    H. H. Rossi and A. M. Kellerer. The Dost Rate Dependence of Oncogenic Tìansformation by Neutrons May Be Due to Variation of Response During the Cell Cycle. Int. J. Rad. Biol. 50 (2): 353–361 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Harald H. Rossi

There are no affiliations available

Personalised recommendations