Advertisement

The Chemistry of Free-Radical-Mediated DNA Damage

  • Clemens von Sonntag
Part of the Basic Life Sciences book series (BLSC, volume 58)

Abstract

In the living cell, ionizing radiation can cause DNA damage by the direct effect (ionization of DNA) and the indirect effect (reaction of radicals formed in the neighborhood of DNA with DNA, e.g., OH, e aq , H, protein- and glutathione-derived radicals). Properties of the base radical cations have been studied in model systems using SO 4 radical to oxidize the nucleobases in aqueous solution. The pKa values of some nucleobase radical cations are reported, so are the ensuing reactions of the thymidine radical cation with water. The products of reactions are compared with those formed by OH radical attack. The reaction of e aq with the nucleobases yields radical anions. Protonation at heteroatom sites and at carbon are discussed, and some recent results regarding the electron transfer to adjacent nucleobases as well as to 5-bromouracil are reported. A brief account is given on the reaction of carbon-centered radicals with the nucleobases. These reactions may mimic the reactions of protein-derived radicals with DNA. Glutathione is present in cells at rather high concentrations and is expected to act as an H- or electron-donor in repairing radiation-induced DNA damage (chemical repair). As thiyl radicals are known to also undergo the reverse reaction, i.e., H-abstraction from suitable solutes, some experiments are reported which probe this type of reaction with dilute DNA solutions.

In some polynucleotides radical transfer from the base radical to the sugar moiety occurs with the consequence of strand breakage and base release. Some currently held mechanistic concepts are discussed.

Attention is drawn to some important open questions which should be addressed in the near future.

Keywords

Radical Cation Radical Anion Strand Break Sugar Moiety Pulse Radiolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. H. Grubbe. Priority in the Therapeutic Use of X-rays. Radiology 21: 156–162 (1933).Google Scholar
  2. 2.
    G. Schwarz. Über Desensibilisierung gegen Röntgen-und Radiumstrahlen. Münchner Medizinische Wochenschrift 56: 1217–1218 (1909).Google Scholar
  3. 3.
    G. Schwarz. Zur genaueren Kenntnis der Radiosensibilität. Wiener KIM. Wochenschr. 11: 397–398 (1910).Google Scholar
  4. 4.
    C. von Sonntag. The Chemical Basis of Radiation Biology. Taylor and Francis, London (1987).Google Scholar
  5. 5.
    M. N. Schuchmann and C. von Sonntag. Radiation Chemistry of Carbohydrates. Part 14. Hydroxyl Radical-Induced Oxidation of D-Glucose in Oxygenated Aqueous Solution. J. Chem. Soc. Perkin Trans. 2: 1958–1963 (1977).Google Scholar
  6. 6.
    C. von Sonntag. Free Radical Reactions of Carbohydrates as Studied by Radiation ‘lèchniques. Adv. Carbohydr. Chem. Biochem. 37: 7–77 (1980).CrossRefGoogle Scholar
  7. 7.
    D. J. Deeble, D. Schulz, and C. von Sonntag. Reactions of OH Radicals with Poly(U) in Deoxygenated Solutions: Sites of OH Radical Attack and the Kinetics of Base Release. Int. J. Radiat. BioL 49: 915–926 (1986).CrossRefGoogle Scholar
  8. 8.
    M.E.A. Churchill, T. D. Maus, N. R. Kallenbach, and N. C. Seeman. A Holliday Recombination Intermadiate is Twofold Symmetric. Proc. Natl. Acad. Sci. USA 85: 4653–4656 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Hüttermann. Free Radicals from Solid Oriented DNA-fibers: Facts and Fancy. Free Radical Res. Comms. 6: 103–104 (1989).CrossRefGoogle Scholar
  10. 10.
    M.C.R. Symons. ESR Spectra for Protonated Thymine and Cytidine Radical Anions: Their Relevance to Irradiated DNA. Int. J. Radiat. BioL 58: 93–96 (1990).CrossRefGoogle Scholar
  11. 11.
    J. E. TUrner, R. N. Hamm, A. H. Wright, R. H. Ritchie, J. L. Magee, A. Chatterjee, and W. E. Bolch. Studies to Link the Basic Radiation Physics and Chemistry of Liquid Water. Radiat. Phys. Chem. 32: 503–510 (1988).Google Scholar
  12. 12.
    A. Chatterjee. Radical-Induced DNA Damage and Specific Implications in Evaluating Genetic Changes. Free Radical Res. Comms. 6: 189–190 (1989).CrossRefGoogle Scholar
  13. 13.
    A. Chatterjee and W. Holley. Energetic Electron Tracks and DNA Strand Breaks. Nucl. Tracks Radiat. Measur. 16: 127–133 (1989).CrossRefGoogle Scholar
  14. 14.
    W. R. Holley, A. Chatterjee, and J. L. Magee. Production of DNA Strand Breaks by Direct Effects of Heavy Charged Particles. Radiat. Res. 121: 161–168 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Chatterjee and W. R. Holley. A General Theory of DNA Strand Break Production by Direct and Indirect Effects. Radiat. Prot. Dosimeoy (in press).Google Scholar
  16. 16.
    J. F. Ward. Molecular Mechanisms of Radiation-Induced Damage to Nucleic Acids. Adv. Radiat. Biol. 5: 181–239 (1975).Google Scholar
  17. 17.
    J. F. Ward. Biochemistry of DNA Lesions. Radiat. Res. 104: 103–111 (1985).CrossRefGoogle Scholar
  18. 18.
    J. F. Ward. Radiation Chemical Mechanisms of Cell Death. In Radiation Research. Proc. 8th Int. Congr. Radiat. Res. Edinburgh, E. M. Fielden, J. F. Fowler, J. H. Hendry, and D. Scott (eds.), pp. 162–168, Vol. 2. Taylor and Francis, London (1987).Google Scholar
  19. 19.
    R. Osman, W. J. Clark, A. P. Mazurek, and H. Weinstein. Theoretical Studies of Molecular Mechanisms of DNA Damage Induced by Hydroxyl Radicals. Free Radical Res. Comms. 6: 131–132 (1989).CrossRefGoogle Scholar
  20. 20.
    L. Pardo, R. Osman, J. Banfalder, A.P. Mazurek, and H. Weinstein. Molecular Mechanisms of Radiation Induced DNA Damage: H-Abstraction and 13–Cleavage. Free Radical Res. Commun. 12/13 (pt. II): 461–463 (1991).Google Scholar
  21. 21.
    R. Osman, L. Pardo, J. Banfelder, A. P. Mazurek, L. Shwatzman, R. Strauss, and H. Weinstein. Molecular Mechanism of Radiation Induced DNA Damage: H-Addition to Bases, Direct Ionization and Double Strand Break. Free Radical Res. Commun. 12/13 (pt. II): 465–467 (1991).Google Scholar
  22. 22.
    H. Weinstein, R. Osman, G. A. Mercier, A. P. Mazurek, L. Pardo, and L. A. Rubenstein. Theory and Computation of Molecular Mechanisms in Biological Processes: Radiation-Induced Damage to DNA and Neurotransmitter Function. Computer Assisted Analysis and Modeling on the IBM 3090, H. U. Brown, ed., pp. 629–673, MIT Press, Boston (1990).Google Scholar
  23. 23.
    J. Blok and H. Loman. Bacteriophage DNA as a Model for Correlation of Radical Damage to DNA and Biological Effects. In Mechanisms of DNA Damage and Repair, M. G. Simic, L. Grossman, and A. D. Upton (eds.), pp. 75–87. Plenum Press, New York (1986).Google Scholar
  24. 24.
    D.G.E. Lemaire, E. Bothe, and D. Schulte-Frohlinde. Yields of Radiation-Induced Main Chain Scission of Poly U in Aqueous Solution: Strand Break Formation Via Base Radicals. Int. J. Radiat. Biol. 45: 351–358 (1984).CrossRefGoogle Scholar
  25. 25.
    F. J. Nabben, J. P. Karman, and H. Loman. Inactivation of Biologically Active DNA by Hydrated Electrons. Int. J. Radiat. Biol. 42: 23–30 (1982).CrossRefGoogle Scholar
  26. 26.
    E. Hayon. Optical-Absorption Spectra of Ketyl Radicals and Radical Anions of Some Pyrimidines. J. Chem. Phys. 51: 4881–4892 (1969).CrossRefGoogle Scholar
  27. 27.
    D. J. Deeble and C. von Sonntag. Radioprotection of Pyrimidines by Oxygen and Sensitization by Phosphate: a Feature of Their Electron Adducts. Int. J. Radiat. Biol. 51: 791–796 (1987).CrossRefGoogle Scholar
  28. 28.
    S. Das, D. J. Deeble, M. N. Schuchmann, and C. von Sonntag. Pulse Radiolytic Studies on Uracil and Uracil Derivatives. Protonation of Their Electron Adducts at Oxygen and Carbon. Int. J. Radiat. Biol. 46: 7–9 (1984).CrossRefGoogle Scholar
  29. 29.
    D. J. Deeble, S. Das, and C. von Sonntag. Uracil Derivatives: Sites and Kinetics of Protonation of the Radical Anions and the UV Spectra of the C(5) and C(6) H-atom Adducts. J. Phys. Chem. 89: 5784–5788 (1985).CrossRefGoogle Scholar
  30. 30.
    H. M. Novais and S. Steenken. ESR Studies of Electron and Hydrogen Adducts of Thymine and Uracil and Their Derivatives and of 4,6–Dihydroxypyrimidines in Aqueous Solution. Comparison with Data from Solid State. The Protonation at Carbon of the Electron Adducts. J. Am. Chem. Soc. 108: 1–6 (1986).CrossRefGoogle Scholar
  31. 31.
    A. Hissung and C. von Sonntag. The Reaction of Solvated Electrons with Cytosine, 5–Methylcytosine and 2’-Deoxycytidine in Aqueous Solution. The Reaction of the Electron Adduct Intermediates with Water, p-Nitroacetophenone and Oxygen. A Pulse Spectroscopic and Pulse Conductometric Study. Int. J. Radiat. Biol. 35: 449–458 (1979).Google Scholar
  32. 32.
    M. Eigen. Protonenübertragung, Saure-Base-Katalyse und enzymatische Hydrolyse. ibil I: Elementarvorgänge. Angew. Chem. 75: 489–508 (1963).CrossRefGoogle Scholar
  33. 33.
    A. Hissung, C. von Sonntag, D. Veltwisch, and K-D. Asmus. The Reaction of the 2’-Deoxyadenosine Electron Adduct in Aqueous Solution. The Effects of the Radiosensitizer p-Nitroacetophenone. A Pulse Spectroscopic and Pulse Conductometric Study. Int J. Radiat Bio!. 39: 63–71 (1981).CrossRefGoogle Scholar
  34. 34.
    K. J. Visscher, M. P. de Haas, H. Loman, B. Vojnovic and J. M. Warman. Fast Protonation of Adenosine and of Its Radical Anion Formed by Hydrated Electron Attack; a Nanosecond Optical and dc-Conductivity Pulse Radiolysis Study. Int. J. Radiat. Biot 52: 745–753 (1987).CrossRefGoogle Scholar
  35. 35.
    S. Steenken. Purine Bases, Nucleosides and Nucleotides: Aqueous Solution Redox Chemistry and Transformation Reactions of Their Radical Cations, e-and OH Adducts. Chem. Rev. 89: 503–520 (1989).CrossRefGoogle Scholar
  36. 36.
    P. N. Moorthy and E. Hayon. Free-Radical Intermediates Produced from the One-Electron Reduction of Purine, Adenine and Guanine Derivatives in Water. J. Am. Chem. Soc. 97: 3345–3350 (1975).PubMedCrossRefGoogle Scholar
  37. 37.
    B. Rakvin, J. N. Herak, K. Voit, and J. Hilttermann. Free Radicals from Single Crystals of Deoxyguanosine 5 ’-monophosphate (Na Salt) Irradiated at Low Tèmperatures. Radiat. Environ. Biophys. 26: 1–12 (1987).PubMedCrossRefGoogle Scholar
  38. 38.
    K. J. Visscher, H.J.W. Spoelder, H. Loman, A. Hummel, and M. L. Hom. Kinetics and Mechanism of Electron Transfer Between Purines and Pyrimidines, Their Dinucleotides and Polynucleotides After Reaction with Hydrated Electrons; A Pulse Radiolysis Study. Int. J. Radiat. Biol. 54: 787–802 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    G. E. Adams and R. L. Willson. On the Mechanism of BUdR Sensitization: A Pulse Radiolysis Study of One Electron Transfer in Nucleic-acid Derivatives. Int. J. Radiat. BioL 22: 589–597 (1972).CrossRefGoogle Scholar
  40. 40.
    S. Das, D. J. Deeble, and C. von Sonntag. Site of H Atom Attack on Uracil and Its Derivatives in Aqueous Solution. Z. Naturforsch. 40c: 292–294 (1985).Google Scholar
  41. 41.
    S. Rijita and S. Steenken. Pattern of OH Radical Addition to Uracil and Methyl-and Carboxyl-Substituted Uracils. Electron Transfer of OH Adducts with N,N,N’,N’ Tètramethyl-p-Phenylenediamine and Tètranitromethane. J. Am. Chem. Soc. 103: 2540–2545 (1981).CrossRefGoogle Scholar
  42. 42.
    M. N. Schuchmann, S. Steenken, J. Wroblewski, and C. von Sonntag. Site of OH Attack on Dihydrouracil and Some of Its Methyl Derivatives. Int. J. Radiat. Biol. 46: 225–232 (1984).CrossRefGoogle Scholar
  43. 43.
    D. K. Hazra and S. Steenken. Pattern of OH Radical Addition to Cytosine and 1–.3–,5–, and 6–Substituted Cytosines. Electron Transfer and Dehydration Reactions of the OH Adducts. J. Am. Chem. Soc. 105: 4380–4386 (1983).CrossRefGoogle Scholar
  44. 44.
    M. Al-Sheikhly and C. von Sonntag. y-Radiolysis of 1,3–Dimethyluracil in N20–Saturated Aqueous Solutions. Z Naturforsch. 38b: 1622–1629 (1983).Google Scholar
  45. 45.
    M. I. Al-Sheikhly, A. Hissung, H.-P. Schuchmann, M. N. Schuchmann, C. von Sonntag, A. Garner, and G. Scholes. Radiolysis of Dihydrouracil and Dihydrothymine in Aqueous Solutions Containing Oxygen; First-and Second-Order Reactions of the Organic Peroxyl Radicals; the Role of Isopyrimidines as Intermediates. J. Chem. Soc. Perkin 73’ans. II 601–608 (1984).Google Scholar
  46. 46.
    M. N. Schuchmann, M. A1–Sheikhly, C. von Sonntag, A. Garner, and G. Scholes. The Kinetics of the Rearrangement of Some Isopyrimidines to Pyrimidines Studied by Pulse Radiolysis. J. Chem. Soc. Perkin Trans. II 1777–1780 (1984).Google Scholar
  47. 47.
    M. N. Schuchmann and C. von Sonntag. The Radiolysis of Uracil in Oxygenated Aqueous Solutions. A Study by Product Analysis and Pulse Radiolysis. J. Chem. Soc. Perkin 73–ans. II 1525–1531 (1983).Google Scholar
  48. 48.
    J. Cadet and M. Berger. Radiation-Induced Decomposition of the Purine Bases Within DNA and Related Model Compounds. Int. J. Radiat. Biol. 47: 127–143 (1985).CrossRefGoogle Scholar
  49. 49.
    J. J. van Hemmen and J. F. Bleichrodt. The Decomposition of Adenine by Ionizing Radiation. Radiat. Res. 46: 444–456 (1971).PubMedCrossRefGoogle Scholar
  50. 50.
    R. L. Willson. The Reaction of Oxygen with Radiation-Induced Free Radicals in DNA and Related Compounds. Int. J. Radiat. Biol. 17: 349–358 (1970).CrossRefGoogle Scholar
  51. 51.
    M. Isildar, M. N. Schuchmann, D. Schulte-Frohlinde and C. von Sonntag. Oxygen Uptake in the Radiolysis of Aqueous Solutions of Nucleic Acids and Their Constituents. Int J. Radiat. BioL 41: 525–533 (1982).CrossRefGoogle Scholar
  52. 52.
    A.J.S.C. Vieira and S. Steenken. Pattern of OH Radical Reaction with 6– and 9–Substituted Purines. Effect of Substituents on the Rates and Activation Parameters of Unimolecular Transformation Reactions of Two Isomeric OH Adducts. J. Phys. Chem. 91: 4138–4144 (1987).Google Scholar
  53. 53.
    A.J.S.C. Vieira and S. Steenken. Pattern of OH Radical Reaction with N6,N6–Dimethyladenosine. Production of Three Isomeric OH Adducts and Their Dehydration and Ring Opening Reactions. J. Am. Chem. Soc. 109: 7441–7448 (1987).CrossRefGoogle Scholar
  54. 54.
    L. P. Candeias and S. Steenken. Structure and Acid-Base Properties of One-Electron-Oxidized Deoxyguanosine, Guanosine, and 1–Methylguanosine. J. Am. Chem. Soc. 111: 1094–1099 (1989).CrossRefGoogle Scholar
  55. 55.
    J. Cadet, M. Berger, C. Decarroz, J.-F. Mouret, J. E. van Lier and R. J. Wagner. Reactions Radicalaire Photo-et Radio-induites Des Bases Puriniques et Pyrimidiniques Des Acides Nucleiques. J. Chim. Phys. (in press).Google Scholar
  56. 56.
    H.-P. Schuchmann, R. Wagner, and C. von Sonntag. The Reactions of the Hydroxymethyl Radical with 1,3–Dimethyluracil and 1,3–Dimethylthymine. Int. J. Radiat. Biol. 50: 1051–1068 (1986).CrossRefGoogle Scholar
  57. 57.
    H. Steinmaus, I. Rosenthal, and D. Elad. Photochemical and y-Ray-Induced Reactions of Purines and Purine Nucleosides with 2–propanol. J. Am. Chem. Soc. 91: 4921–4923 (1969).CrossRefGoogle Scholar
  58. 58.
    R. Ben-Ishai, M. Green, E. Graff, D. Elad, H. Steinmaus, and J. Salomon. Photoalkylation of Purines in DNA. Photochem. Photobiol. 17: 155–167 (1973).PubMedCrossRefGoogle Scholar
  59. 59.
    H. Steinmaus, I. Rosenthal, and D. Elad. Light-and y-Ray-Induced Reactions of Purines and Purine Nucleosides with Alcohols. J. Org . Chem. 36: 3594–3598 (1971).Google Scholar
  60. 60.
    D. Elad and I. Rosenthal. Photochemical Alkylation of Caffeine with Amino-Acids. Chem. Commun.: 905–906 (1969).Google Scholar
  61. 61.
    M. Wala, E. Bothe, H. Görner, and D. Schulte-Frohlinde. Quantum Yields for the Generation of Hydrated Electrons and Single-Strand Breaks in Poly(C), Poly(A) and Single-Stranded DNA in Aqueous Solution on 20 ns Laser Excitation at 248 nm. J. Photochem. Photobiol. A: Chem. 53: 87–108 (1990).CrossRefGoogle Scholar
  62. 62.
    D. Schulte-Frohlinde, M. G. Simic, and H. Görner. Laser-Induced Strand Break Formation in DNA and Polynucleotides. Photochem. Photobiol. 52: 1137–1151 (1990).PubMedCrossRefGoogle Scholar
  63. 63.
    D. J. Deeble, M. N. Schuchmann, S. Steenken, and C. von Sonntag. Direct Evidence for the Formation of Thymine Radical Cations from the Reaction of SO4 with Thymine Derivatives: A Pulse Radiolysis Study with Optical and Conductance Detection. J. Phys. Chem. 94: 8186–8192 (1990).CrossRefGoogle Scholar
  64. 64.
    D. Schulte-Frohlinde and K. Hildenbrand. Electron Spin Resonance Studies of the Reactions of •OH and SO4 Radicals with DNA. In Free Radicals in Synthesis and Biology, F Minisci, (ed.), pp. 335–359. Dordrecht: Kluwer, (1989).Google Scholar
  65. 65.
    H.-P. Schuchmann, D. J. Deeble, G. Olbrich, and C. von Sonntag. The SO4S-Induced Chain Reaction of 1,3–Dimethyluracil with Peroxodisulphate. Int. J. Radiat. Biot 51: 441–453 (1987).CrossRefGoogle Scholar
  66. 66.
    E. Bothe, D. J. Deeble, D.G.E. Lemaire, R. Rashid, M. N. Schuchmann, H.-P. Schuchmann, D. Schulte-Frohlinde, S. Steenken, and C. von Sonntag. Pulse-Radiolytic Studies on the Reactions of SO4 with Uracil Derivatives. Radiat. Phys. Chem. 36: 149–154 (1990).Google Scholar
  67. 67.
    R. Rashid, F. Mark, H.-P. Schuchmann, and C. von Sonntag. The SO4S-Induced Oxidation of 1,3–Dimethylthymine and 1,3,6–Dimethyluracil by Potassium Peroxodisulphate and Oxygen in Aqueous Solution: An Interesting Contrast. Int. J. Radiat. Biol. 59: 1081–1100 (1990).CrossRefGoogle Scholar
  68. 68.
    C. von Sonntag. New Aspects in the Free-Radical Chemistry of Pyrimidine Nucleobases. Free Rad. Res. Comms. 2: 217–224 (1987).CrossRefGoogle Scholar
  69. 69.
    A. A. Shaw and J. Cadet. Radical Combination Processes Under the Direct Effects of Gamma Radiation on Thymidine. J. Chem. Soc. Perkin Trans. 2: 2063–2070 (1990).Google Scholar
  70. 70.
    C. Decarroz, J. R. Wagner, and J. Cadet. Specific Deprotonation Reactions of the Pyrimidine Radical Cation Resulting from the Menadione Mediated Photosensitization of 2’-Deoxycytidine. Free Radical Res. Commun. 2: 295–301 (1987).CrossRefGoogle Scholar
  71. 71.
    M. G. Simic and S. V. Jovanovic. Free Radical Mechanisms of DNA Damage. In Mechanisms of DNA Damage and Repair, M. G. Simic, L. Grossman, and A. D. Upton (eds.), pp. 39–50. Plenum Press, New York (1986).Google Scholar
  72. 72.
    D. Schulte-Frohlinde and E. Bothe. Identification of a Major Pathway of Strand Break Formation in Poly U Induced by OH Radicals in Presence of Oxygen. Z. Naturforsch. 39c: 315–319 (1984).Google Scholar
  73. 73.
    E. Bothe, G. Behrens, E. Böhm, B. Sethuram, and D. Schulte-Frohlinde. Hydroxyl Radical-Induced Strand Break Formation of Poly(U) in the Presence of Oxygen. Comparison of the Rates as Determined by Conductivity, ESR and Rapid-Mix Experiments with a Thiol. Int. J. Radiat. Biol. 49: 57–66 (1986).CrossRefGoogle Scholar
  74. 74.
    D.G.E. Lemaire, E. Bothe, and D. Schulte-Frohlinde. Hydroxyl Radical-Induced Strand Break Formation of Poly(U) in Anoxic Solution. Effect of Dithiothreitol and TTtranitromethane. Int. J. Radiat. Biol. 51: 319–330 (1987).CrossRefGoogle Scholar
  75. 75.
    E. Bothe, M. Adinarayana, and D. Schulte-Frohlinde. Rate and Yield of OH-Induced Strand Break Formation of Polynucleotides and DNA. Free Radical Res. Commun. 6: 139 (1989).CrossRefGoogle Scholar
  76. 76.
    D. J. Deeble and C. von Sonntag. y-Radiolysis of Poly(U) in Aqueous Solution. The Role of Primary Sugar and Base Radicals in the Release of Undamaged Uracil. Int. J. Radiat. Biol. 46: 247–260 (1984).CrossRefGoogle Scholar
  77. 77.
    D. J. Deeble and C. von Sonntag. Radiolysis of Poly(U) in Oxygenated Solutions. Int. J. Radiat. BioL 49: 927–936 (1986).CrossRefGoogle Scholar
  78. 78.
    K. Hildenbrand and D. Schulte-Frohlinde. E.S.R. Studies on the Mechanism of Hydroxyl Radical-Induced Strand Breakage of Polyuridylic Acid. Int J. Radiat. Biol. 55: 725–738 (1989).PubMedCrossRefGoogle Scholar
  79. 79.
    K. Hildenbrand and D. Schulte-Frohlinde. ESR Studies on the Mechanism of •OH-Induced Strand Breakage of Poly(U). Free Radical Res. Comms. 6: 137–138 (1989).CrossRefGoogle Scholar
  80. 80.
    A. Samuni and P. Neta. Hydroxyl Radical Reaction with Phosphate Esters and the Mechanism of Phosphate Cleavage. J. Phys. Chem. 77: 2425–2429 (1973).CrossRefGoogle Scholar
  81. 81.
    S. Steenken, G. Behrens, and D. Schulte-Frohlinde. Radiation Chemistry of DNA Model Compounds. Part IV. Phosphate Ester Cleavage in Radicals Derived from Glycerol Phosphates. Int. J. Radial. Biol. 25: 205–210 (1974).Google Scholar
  82. 82.
    G. Behrens, G. Koltzenburg, A. Ritter, and D. Schulte-Frohlinde. The Influence of Protonation or Alkylation of the Phosphate Group on the E.S.R. Spectra and on the Rate of Phosphate Elimination from 2–Methoxyethyl Phosphate 2–yl Radicals. Int. J. Radiat. BioL 33: 163–171 (1978).CrossRefGoogle Scholar
  83. 83.
    E. Bothe and D. Schulte-Frohlinde. Release of K+ and H+ from Poly U in Aqueous Solution Upon y and Electron Irradiation. Rate of Strand Break Formation in Poly U. Z. Naturforsch. 37c: 1191–1204 (1982).Google Scholar
  84. 84.
    E. Bothe and H. Selbach. Rate and Rate-Determining Step of Hydrogen-Atom-Induced Strand breakage in Poly(U) in Aqueous Solution Under Anoxic Conditions. Z. Naturforsch. 40c: 247–253 (1985).Google Scholar
  85. 85.
    L. R. Karam, M. Dizdaroglu, and M. G. Simic. Intramolecular H Atom Abstraction from the Sugar Moiety by Thymine Radicals in Oligo-and Polydeoxynucleotides. Radiat. Res. 116: 210–216 (1988).PubMedCrossRefGoogle Scholar
  86. 86.
    M. Adinarayana, E. Bothe, and D. Schulte-Frohlinde. Hydroxyl Radical-Induced Strand Break Formation in Single-Stranded Polynucleotides and Single-Stranded DNA in Aqueous Solution as Measured by Light Scattering and by Conductivity. Int. J. Radiat. Biol. 54: 723–737 (1988).PubMedCrossRefGoogle Scholar
  87. 87.
    C. P. Murthy, D. J. Deeble, and C. von Sonntag. The Formation of Phosphate End Groups in the Radiolysis of Polynucleotides in Aqueous Solution. Z Naturforsch. 43c: 572–576 (1988).Google Scholar
  88. 88.
    P. J. Boon, P. M. Cullis, M.C.R. Symons, and B. W. Wren. Effects of Ionizing Radiation on Deoxyribonucleic Acid and Related Systems. Part 1. The Role of Oxygen. J. Chem. Soc. Perkin Trans. II 1393–1399 (1984).Google Scholar
  89. 89.
    D. Schulte-Frohlinde, J. Opitz, H. Garner, and E. Bothe. Model Studies for the Direct Effect of High-Energy Irradiation on DNA. Mechanism of Strand Break Formation Induced by Photoionization of Poly U in Aqueous Solution. Int. J. Radiat. Biot 48: 397–408 (1985).CrossRefGoogle Scholar
  90. 90.
    E. Bothe, G. A. Qureshi, and D. Schulte-Frohlinde. Rate of OH Radical Induced Strand Break Formation in Single Stranded DNA Under Anoxic Conditions. An Investigation in Aqueous Solutions Using Conductivity Methods. Z. Naturforsch. 38c: 1030–1042 (1983).Google Scholar
  91. 91.
    A. F Fuciarelli, B. J. Wegher, E. Gajewski, M. Dizdaroglu and W. F. Blakely. Quantitative Measurement of Radiation-Induced Base Products in DNA Using Gas Chromatography-Mass Spectroscopy. Radiat. Res. 119: 219–231 (1989).PubMedCrossRefGoogle Scholar
  92. 92.
    A. F. Fuciarelli, B. J. Wegher, W. F Blakeley, and M. Dizdaroglu. Yields of Radiation-Induced Base Products in DNA: Effects of DNA Conformation and Gassing Conditions. Int. J. Radiat. Biot (in press).Google Scholar
  93. 93.
    F Beesk, M. Dizdaroglu, D. Schulte-Frohlinde, and C. von Sonntag. Radiation-Induced DNA Strand Breaks in Deoxygenated Aqueous Solution. The Formation of Altered Sugars as End Groups. Int. J. Radiat. Biol. 36: 565–576 (1979).CrossRefGoogle Scholar
  94. 94.
    M. Dizdaroglu, C. von Sonntag, and D. Schulte-Frohlinde. Strand Breaks and Sugar Release by y-Irradiation of DNA in Aqueous Solution. J. Am. Chem. Soc. 97: 2277–2278 (1975).PubMedCrossRefGoogle Scholar
  95. 95.
    M. Dizdaroglu, D. Schulte-Frohlinde, and C. von Sonntag. Radiation Chemistry of DNA, II. Strand Breaks and Sugar Release by y-Irradiation of DNA in Aqueous Solution. The Effect of Oxygen. Z Naturforsch. 30c: 826–828 (1975).Google Scholar
  96. 96.
    M. Isildar, M. N. Schuchmann, D. Schulte-Frohlinde and C. von Sonntag. y-Radiolysis of DNA in Oxygenated Aqueous Solutions: Alterations at the Sugar Moiety. Int. J. Radiat. Biot 40: 347–354 (1981).CrossRefGoogle Scholar
  97. 97.
    M. Dizdaroglu, D. Schulte-Frohlinde, and C. von Sonntag. Isolation of 2–deoxy-D-erythro-pentonic Acid from an Alkali-Labile Site in y-Irradiated DNA. Int. J. Radiat. Biot 32: 481–483 (1977).CrossRefGoogle Scholar
  98. 98.
    M. Dizdaroglu, D. Schulte-Frohlinde, and C. von Sonntag. y-Radiolysis of DNA in Oxygenated Aqueous Solution. Structure of an Alkali-Labile Site. Z. Naturforsch. 32c: 1021–1022 (1977).Google Scholar
  99. 99.
    F. Mark, U. Becker, J. N. Herak, and D. Schulte-Frohlinde. Radiolysis of DNA in Aqueous Solution in the Presence of a Scavenger: A Kinetic Model Based on a Nonhomogeneous Reaction of OH Radicals with DNA Molecules of Spherical or Cylindrical Shape. Radiat. Environ. Biophys. 28: 81–99 (1989).PubMedCrossRefGoogle Scholar
  100. 100.
    T. Alper. Cellular Radiobiology. Cambridge: Cambridge University Press, (1979).Google Scholar
  101. 101.
    D. Schulte-Frohlinde and E. Bothe. Determination of the Rate Constants of the Alper-Formula from Kinetic Measurements on DNA in Aqueous Solution and Comparison with Data from Cells. Int. J. Radias. Biot 58: 603–611 (1990).CrossRefGoogle Scholar
  102. 102.
    C. von Sonntag and H.-P. Schuchmann. Sulfur Compounds and Chemical Repair in Radiation Biology. In Sulfur-Centered Reactive Intermediates in Chemistry and Biology, C. Chatgilialoglu and K.-D. Asmus, eds., pp. 409–414, Plenum Press, London (1990).Google Scholar
  103. 103.
    M. S. Akhlaq, H.-P. Schuchmann, and C. von Sonntag. The Reverse of the “Repair” Reaction of Thiols: H-Abstraction at Carbon by Thiyl Radicals. Int. J. Radiat. Biol. 51: 91–102 (1987).CrossRefGoogle Scholar
  104. 104.
    C. Schöneich, M. Bonifacic, and K.-D. Asmus. Reversible H-atom Abstraction from Alcohols by Thiyl Radicals: Determination of Absolute Rate Constants by Pulse Radiolysis. Free Radical Res. Commun. 6: 393–405 (1989).CrossRefGoogle Scholar
  105. 105.
    C. Schöneich, K.-D. Asmus, U. Dillinger, and F von Bruchhausen. Thiyl Radical Attack on Polyunsaturated Fatty Acids: a Possible Route to Lipid Peroxidation. Biochem. Biophys. Res. Commun. 161: 113–120 (1989).PubMedCrossRefGoogle Scholar
  106. 106.
    M. Berger and J. Cadet. Isolation and Characterization of the Radiation-Induced Degradation Products of 2’-Deoxyguanosine in Oxygen-Free aqueous solutions. Z. Naturforsch. 40b: 1519–1531 (1985).Google Scholar
  107. 107.
    S. Zheng, G. L. Newton, G. Gonick, R. C. Fahey, and J. F. Ward. Radioprotection of DNA by Thiols: Relationship Between the Net Charge on a Thiol and Its Ability to Protect DNA. Radiat. Res. 114: 11–7 (1988).PubMedCrossRefGoogle Scholar
  108. 108.
    M. S. Akhlaq, S. Al-Baghdadi, and C. von Sonntag. On the Attack of Hydroxyl Radicals on Polyhydric Alcohols and Sugars and the Reduction of the So Formed Radicals by 1,4–Dithiothreitol. Carbohydr. Res. 164: 71–83 (1987).CrossRefGoogle Scholar
  109. 109.
    P. O’Neill. Pulse Radiolytic Study of the Interaction of Thiols and Ascorbate with OH-Adducts of dGMP and dG. Implications for DNA Repair Processes. Radiat. Res. 96: 198–210 (1983).PubMedCrossRefGoogle Scholar
  110. 110.
    P. O’Neill. Hydroxyl Radical Damage: Potential Repair by Sulphydryls, Ascorbate and Other Antioxidants. In Oxidative Damage and Related Enzymes, G. Rotilio and J.V. Bannister, Chur: Harwood, eds., pp. 337–341. Life Chem. Rep. Suppl. Ser. 2 (1984).Google Scholar
  111. 111.
    P. O’Neill and P. W. Chapman. Potential Repair of Free Radical Adducts of dGMP and dG by a Series of Reductants. A Pulse Radiolytic Study. Int. J. Radiat. Biol. 47: 71–80 (1985).CrossRefGoogle Scholar
  112. 112.
    S. A. Grachev, E. V. Kropachev, and G. I. Litvyakova. The Reaction of Hydrogen Atom Transfer from the SH Group of Thiols to the OH-Adducts of Uracil in Radiolysis. Izv. Akad. Nauk SSSR, Ser. Khim. 2746–2752 (1988).Google Scholar
  113. 113.
    J. Cadet, M. Berger, P. Demonchaux, and J. Lhomme. Modifying Effects of Cysteine and Aromatic Sulfhydryl and Disulfide Agents on the Radiation-Induced Decomposition of Thymidine. Radiat. Phys. Chem. 32: 197–202 (1988).Google Scholar
  114. 114.
    E. Livneh, S. Tel-Or, J. Sperling, and D. Elad. Light-Induced Free-Radical Reactions of Purines and Pyrimidines in Deoxyribonucleic Acid. Effect of Structure and Base Sequence on Reactivity. Biochemistry 21: 3698–3703 (1982).PubMedCrossRefGoogle Scholar
  115. 115.
    C. von Sonntag and H.-P. Schuchmann. Elucidation of Peroxyl Radical Reactions in Aqueous Solution with Radiation-Chemical Techniques. Agnew. Chem. Int. Ed. Engl. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Clemens von Sonntag
    • 1
  1. 1.Max-Planck-Institut für StrahlenchemieMülheim a.d. RuhrGermany

Personalised recommendations