The Molecular Biology of Radiation Carcinogenesis

  • Eric J. Hall
  • Greg A. Freyer
Part of the Basic Life Sciences book series (BLSC, volume 58)


Major new insights into carcinogenesis have come from recent advances in cellular and molecular biology. The concept of oncogenes provides a simple explanation for how agents as diverse as radiation, chemicals or retroviruses can induce tumors that are indistinguishable one from another. Oncogenes may be activated by a point mutation, by a chromosome translocation, or by amplification. Ionizing radiations are efficient at the first two mechanisms. While oncogenes are frequently associated with leukemias and lymphomas, they are associated with only 10 to 15% of human solid cancers. The importance of the loss of suppressor genes was suggested first from studies with human-hamster hybrid cells, but has since been shown to be of importance in an increasing number of human solid tumors, from rare tumors such as retinoblastoma to more common tumors such as small cell lung cancer and colorectal cancer. The mechanism of somatic homozygosity clearly involves several steps, some of which, such as a deletion, could be readily produced by ionizing radiation.

The multi-step nature of carcinogenesis can be demonstrated in the petri dish, where the transfection of multiple oncogenes is required to transform normal cells from short-term expiants. It can be shown, too, in colorectal cancer in the human, where the activation of an oncogene and the loss of more than one suppressor gene may be involved in the progression from normal epithelium to a frank malignancy.


HeLa Cell Chronic Myelogenous Leukemia Normal Human Fibroblast Dicentric Chromosome Radiation Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Bishop. Oncogenes. Sci. Am. 246: 80–92 (March 1982).PubMedCrossRefGoogle Scholar
  2. 2.
    J. M. Bishop and H. E. Varmus. Functions and Origins of Retrovirial Transforming Genes. In RNA Timor Viruses. Molecular Biology of Tumor Viruses, 2nd ed. R. Weiss, N. Teich, H. Varmus, and J. Coffin, pp. 990–1108. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982).Google Scholar
  3. 3.
    J. M. Bishop. Cellular Oncogenes and Retroviruses. Ann. Rev. Biochem. 52: 301–354 (1983).PubMedCrossRefGoogle Scholar
  4. 4.
    H. E. Varmus. The Molecular Genetics of Cellular Oncogenes. Ann. Rev. Genet. 18: 553–612 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Stehclin, H. E. Varmus, J. M. Bishop, and P. K. Vogt. DNA Related to the Transforming Gene(s) of Avian Sarcoma Viruses Is Present in Normal Avian DNA. Nature 260: 170–173 (1976).CrossRefGoogle Scholar
  6. 6.
    D. H. Spector, H. E. Varmus, and J. M. Bishop. Nucleotide Sequences Related to the Transforming Gene of Avian Sarcoma Virus Are Present in DNA of Uninfected Vertebrates. Proc. Natl. Acad. Sci. USA 78: 4102–6 (1978).CrossRefGoogle Scholar
  7. 7.
    D. DeFoe-Jones, E. E. Scolnick, R. Koller, and R. Dhar. Ras-Related Gene Sequences Identified and Isolated from Saccharomyces Cerevisiae. Nature 306: 707–709 (1983).CrossRefGoogle Scholar
  8. 8.
    B. Z. Shilo and R. A. Weinberg. DNA Sequences Homologous to Vertebrate Oncogenes Are Conserved in Drosophila Melanogaster. Proc. Natl. Acad. Sci. USA 78: 6789–6792 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Takeya and H. Hanafusa. Structure and Sequence of the Cellular Gene Homologous to the RSV src Gene and the Mechanism for Generating the Transforming Virus. Cell 32: 881–890 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Weiss, N. Teich, H. Varmus, and J. Coffin, eds. RNA Tumor Viruses, 2nd ed., pp. 579–765. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1985).Google Scholar
  11. 11.
    Y. Sugimoto, M. Whitman, L. C. Cantley, and R. L. Erickson. Evidence That the Rous Sarcoma Virus Transforming Gene Product Phosphorylates Phosphatidylinositol and Diacylglycerol. Proc. Natl. Acad. Sci. USA 81: 2117–2122 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    M. D. Waterfield, G. T. Scrace, N. Whittle, P. Stroobant, A. Johnsson, A. Wastesar, B. Westermark, C-H. Heldin, J. S. Huang, and T. F Deuel. Platelet Derived Growth Factor is Structurally Related to the Putative Transforming Protein. Simian Sarcoma Virus, p. 28. Nature 304: 35–39 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    C. J. Sherr, G. W. Rettenmier, R. Sacca, M. E Roussel, A. T. Look, and E. R. Stanley. The c-fms Proto-Oncogene Product Is Related to the Receptor for the Mononuclear Phagocyte Growth Factor, CSF-1. Cell 41: 665–676 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    G. M. Cooper. Cellular Transforming Genes. Science 217: 801–806 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    E H. Graham and A. J. van der Eb. A New Technique for the Assay of Infectivity of Human Adenovirus 5 DNA. Virology 52: 456–467 (1973).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Pellicer, D. Robins, B. Wold, R. Sweet, J. Jackson, I. Lowy, J. M. Roberts, G. K. Sim, S. Silverstein, and R. Axel. Altering Genotype and Phenotype by DNA-Mediated Transfer. Science 209: 1414–1422.Google Scholar
  17. 17.
    C. Shih and R. A. Weinberg. Isolation of a Transforming Sequence from a Human Bladder Carcinoma Cell Line. Cell 29: 161–169 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    E. Southern. Detection of Specific Sequence Among DNA Fragments Separated by Gel Electrophoresis. J. Mol. Biol. 98: 503–525 (1975).PubMedCrossRefGoogle Scholar
  19. 19.
    B. Abberts, D. Broy, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. The Molecular Biology of the Cell, 2nd ed., pp. 1187–1218. Garland Publishers Inc., New York (1989).Google Scholar
  20. 20.
    S. A. Aaronson and S. R. Tronick. The Role of Oncogenes in Human Neoplasin. In Important Advances in Oncology, ed. V. DeVita, S. Hellman, and S. Rosenberg. Philadelphia: Lippincott (1986).Google Scholar
  21. 21.
    R. S. Dalla-Favera, S. Martinotti, R. C. Gallo, J. Erikson, and C. M. Croce. Ttanslocation and Rearrangements of the c-myc Oncogene Locus in Human Undifferentiated B-cell Lymphomas. Science 219: 963–997.Google Scholar
  22. 22.
    E. Shtivelman, B. Lifshitz, R. P. Gale, and E. Canaani. Fused Transcript of abl and ber Genes in Chronic Myelogenous Leukemia. Nature 315: 550–554.Google Scholar
  23. 23.
    K. Shimizu, Y. Nakatsu, M. Sekiguchi, K. Hokamura, K. Tanaka, M. Tèrada, and T. Sugimura. Molecular Cloning of an Activated Human Oncogene, Homologous to v-raf from Primary Stomach Cancer. Proc. Natl. Acad. Sci. USA 82: 5641–5645 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner. Molecular Biology of the Gene,4th ed., pp. 1058–1096. Benjamin/Cummings, Menlo Park, California.Google Scholar
  25. 25.
    J. L. Bos. The ras Gene Family and Human Carcinogensis. Mutat. Res. 195: 255–271, 1988.PubMedGoogle Scholar
  26. 26.
    G. M. Brodeur, R. C. Seeger, M. Schwab, H. E. Varmus, and J. M. Bishop. Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science 224: 1121–1124.Google Scholar
  27. 27.
    A. De Klein, A. G. van Kessel, G. Grosveld, C. R. Bartram, A. Hagemeijer, D. Bootsma, N. K. Spurr, N. Heisterkamp, J. Groffen, and J. R. Stephenson. A Cellular Oncogene is Translocated to the Philadelphia Chromosome in Chronic Myelocytic Leukemia. Nature 300: 765–767.Google Scholar
  28. 28.
    E. Pimentel. Oncogenes and Human Cancer. Cancer Genet. Cytogenet. 14: 347–368 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    J. D. Rowley. Identification of the Constant Chromosome Regions Involved in Human Hematologic Malignant Disease. Science 216: 749–751 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    J. J. Yunis. Chromosomal Rearrangements, Genes, and Fragile Sites in Cancer: Clinical and Biological Implications. In Important Advances in Oncology, ed. V. DeVita, S. Hellman, and S. Rosenberg, pp. 93–128. Lippincott, Philadelphia, Pennsylvania (1986).Google Scholar
  31. 31.
    M. Schwab, K. H. Alitalo, K. Klempnauer, H. E. Varmus, J. M. Bishop, F. Gilbert, G. Brodeur, M. Goldstein, and J. Trent. Amplified DNA with Limited Homology to myc Cellular Oncogene Is Shared by Human Neuroblastoma Cell-lines and a Neuroblastoma Timor. Nature 305: 245–248.Google Scholar
  32. 32.
    G. M. Brodeur, R. C. Seeger, M. Schwab, H. E. Varmus, and J. M. Bishop. Amplification of N-myc in Untreated Human Neuroblastomas Correlates with Advanced Disease Stage. Science 224: 1121–1124.Google Scholar
  33. 33.
    W. M. Court-Brown and R. Doll. Expectation of Life and Mortality from Cancer Among British Radiologists. Br. Med. J. 2: 181–190 (1958).PubMedCrossRefGoogle Scholar
  34. 34.
    H. S. Martland. Occurrence of Malignancy in Radioactive Persons. Am. J. Cancer 15: 2435–2516 (1931).Google Scholar
  35. 35.
    G. W. Beebe, M. Ishida, and S. Jablon. Studies of the Mortality of A-bomb Survivors. I. Plan of Study and Mortality in the Medical Subsample (Selection 1), 1950–1958. Radiat. Res. 16: 253–280 (1962).PubMedCrossRefGoogle Scholar
  36. 36.
    C. Borek, A. Ong, and H. Mason. Distinctive Transforming Genes in X-ray–Transformed Mammalian Cells. Proc. Natl. Acad. Sci. USA 84: 794–798 (1987).PubMedCrossRefGoogle Scholar
  37. 37.
    J. Shuin, P. C. Billings, J. R. Lillehaug, S. R. Patierno, P. Roy-Burman, and J. R. Landolph. Enhanced Expression of c-myc and Decreased Expression of c-fos Protooncogenes in Chemically and Radiation Transformed C3H/10T/2C18 Mouse Embryo Cell Line. Cancer Res. 46: 5302–5311 (1986).PubMedGoogle Scholar
  38. 38.
    I. Guerrero, A. Villasante, V. Corces, and A. Pellicer. Activation of a c-K-ras Oncogene by Somatic Mutation in Mouse Lymphomas Induced by Gamma Radiation. Science 225: 1159–1162 (1984).PubMedCrossRefGoogle Scholar
  39. 39.
    E. W. Newcomb, J. J. Steinberg, and A. Pellicer. Ras Oncogenes and Phenotypic Staging in N-methyl Nitrosourea and y-Irradiation-Induced Thymic Lymphomas in C57BL/6J Mice. Cancer Res. 48: 5514–5521 (1988).PubMedGoogle Scholar
  40. 40.
    B. Krolewski and J. B. Little. Molecular Analysis of DNA Isolated from the Different Stages of X-ray-Induced Transformation In Vitro. Mol. Carcinog. 2: 27–33 (1989).PubMedCrossRefGoogle Scholar
  41. 41.
    H. Land, L. F. Parada, and R. A. Weinberg. Timorigenic Conversion of Primary Embryo Fibroblasts Requires at Least TWo Cooperating Oncogenes. Nature 304: 596–602 (1983).PubMedCrossRefGoogle Scholar
  42. 42.
    H. E. Ruley. Adenovirus Early Region lA Enables Virial and Cellular Transforming Genes to Transform Primary Cells in Culture. Nature 304: 602–606 (1983).PubMedCrossRefGoogle Scholar
  43. 43.
    E. J. Stanbridge. Identifying Timor Suppressor Genes in Human Colorectal Cancer. Science 247: 12–13 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    E. R. Fearon, K. R. Cho, J. M. Nigro, S. E. Kern, J. W. Simons, J. M. Ruppert, S. R. Hamilton, A. C. Preisinger, G. Thomas, K. W. Kinzler, and B. Vogelstein. Identification of a Chromosome 189 Gene That Is Altered in Colorectal Cancers. Science 247: 49–56 (1990).PubMedCrossRefGoogle Scholar
  45. 45.
    H. Harris. Cell Fusion and the Analysis of Malignancy: The Croonian Lecture. Proc. R. Soc. B 179: 1–20 (1971).CrossRefGoogle Scholar
  46. 46.
    E. J. Stanbridge. Suppression of Malignancy in Human Cells. Nature 260: 17–20 (1976).PubMedCrossRefGoogle Scholar
  47. 47.
    R.E.K. Fournier and F. H. Ruddle. Microcell-Mediated Transfer of Murine Chromosomes into Mouse, Chinese Hamster, and Human Somatic Cells. Proc. Natl. Acad. Sci. USA, 74: 319–323 (1977).PubMedCrossRefGoogle Scholar
  48. 48.
    P. J. Saxon et al. Selective Transfer of Individual Human Chromosomes to Recipient Cells. Mol. Cell Biot 5: 140–146 (1985).Google Scholar
  49. 49.
    P. J. Saxon, E. S. Srivatsan, and E. J. Stanbridge. Introduction of Chromosome 11 Via Microcell Transfer Controls Timorigenic Expression of HeLa Cells. Embo J. 5: 3461–3466 (1986).Google Scholar
  50. 50.
    B. E. Weissman, P. J. Saxon, S. R. Pasquale, G. R. Jones, A. G. Geiser, E. J. Stanbridge. Introduction of a Normal Human Chromosome 11 into a Wilms’ Timor Cell Line Controls Its Thmorigenic Expression. Science 236: 175–180 (1987).PubMedCrossRefGoogle Scholar
  51. 51.
    J. L. Redpath, C. Sun, M. Colman, and E. J. Stanbridge. Neoplastic Ttansformation of Human Hybrid Cells by y-Radiation: A Quantitative Assay. Radiat. Res. 110: 468–472 (1987).PubMedCrossRefGoogle Scholar
  52. 52.
    W. H. Lee, R. Bookstein, E Hong, L. J. Young, J. Y. Shew, and EY-HP Lee. Human Retinablastoma Susceptibility Gene: Cloning, Identification, and Sequence. Science 235: 1394–1399 (1987).PubMedCrossRefGoogle Scholar
  53. 53.
    H.J.S. Huang, J. K. Yee, J. Y. Shew, P. L. Chen, R. Bookstein, T. Friedmann, EY-HP Lee, and W. H. Lee. Suppression of the Neoplastic Phenotype by Replacement of the RB Gene in Human Cancer Cells. Science 242: 1563–1566 (1988).PubMedCrossRefGoogle Scholar
  54. 54.
    D. Pinkel, T. Straume, and J. W. Gray. Cytogenetic Analysis Using Quantitative, High Sensitivity Fluorescence, Hybridization. Proc. Natl. Acad. Sci. USA 83: 2934–2938 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    D. Pinkel, J. Landegent, C. Collins, J. Fuscoe, R. Segraves, J. Lucas, and J. Gray. Fluorescence In Situ Hybridization with Human Chromosome Specific Libraries: Detection of ‘I7isomy 21 and Tfanslocations of Chromosome 4. Proc. Natl. Acad. Sci. USA 85: 9138–9142 (1988).PubMedCrossRefGoogle Scholar
  56. 56.
    J. S. Waye and H. E Willard. Chromosome Specificity of Satellite DNA’s: Short-and Long-Range Organization of a Diverged Dimeric Subset of Human Alpha Satellite from Chromosome 3. Chromosoma 97: 475–480 (1989).PubMedCrossRefGoogle Scholar
  57. 57.
    A. Jauch, C. Daumer, P. Lichter, J. Murken, T. Schroeder-Kurth, and T. Cremer. Chromosomal In Situ Suppression Hybridization of Human Gonosomes and Autosomes and Its Use in Clinical Cytogenetics. Hum. Genet. 85: 145–150, 1990.PubMedCrossRefGoogle Scholar
  58. 58.
    H. Van Dekkcn, J. G. Pizzolo, D. R Kelsen, and M. R. Melamed. Targeted Cytogenic Analysis of Gastric Tumors by In Situ Hybridization with a Set of Chromosome Specific DNA Probes. Cancer 66: 491–497 (1990).CrossRefGoogle Scholar
  59. 59.
    T. Cremer, P. Lichter, J. Borden, D. C. Ward, and L. Manuelidis. Detection of Chromosome Aberrations in Metaphase and Interphase Thmor Cells by In Situ Hybridization Using Chromosome-Specific Library Probes. Hum. Genet. 80: 235–246 (1988).PubMedCrossRefGoogle Scholar
  60. 60.
    E Lichter, T. Cremer, C. C. Tang, P. C. Watkins, L. Manuelidis, and D. C. Ward. Rapid Detection of Human Chromosome 21 Aberrations by In Situ Hybridization. Proc. Natl. Acad. Sci. USA 85: 9664–9668 (1988).PubMedCrossRefGoogle Scholar
  61. 61.
    J. C. Fuscoe, C. C. Collins, D. Pinkel, and J. W. Gray. An Efficient Method for Selecting Unique-Sequence Clones from DNA Libraries and Its Application to Fluorescent Staining of Human Chromosome 21 Using In Situ Hybridization. Genomics 5: 100–109 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Eric J. Hall
  • Greg A. Freyer
    • 1
  1. 1.Center for Radiological ResearchCollege of Physicians and Surgeons of Columbia UniversityNew YorkUSA

Personalised recommendations