The Visible and Near-Infrared Absorption Spectra of Some Trivalent Actinide and Lanthanide Elements in DClO4 and in Molten Nitrate Salts

  • W. T. Carnall
  • P. R. Fields
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 1)


Molten salts constitute an important class of solvents for the study of the chemistry of the actinide and lanthanide elements, particularly the intensely radioactive transuranium elements where the stability of certain of these systems to radiation decomposition is important. One tool useful in this type of study is the observation of absorption spectra. In the present investigation we report observations of absorption spectra of trivalent actinide and lanthanide ions in LiNO3-KNO3 eutectic at 150°C in the region between 0.36 and 2.5 μ. Transitions to low-lying excited states have been observed in crystals of both actinide and lanthanide elements in the near-infrared region (1.3–2.5μ) and thus would be predicted to be observable in solution. However, the existence of intense solvent absorption bands in aqueous solution above 1.3 μ constitutes a severe limitation on the use of that medium. In the nitrate eutectic there are essentially no interfering solvent absorption bands between 1.3 and 2.5 μ. It is also possible to observe portions of this region in deuterated solvents, and thus we are able to compare over an extended range the effects of different ligand fields on 4f and 5f electrons. The bands observed in the near-infrared region should prove to be of analytical importance since the extinction coefficients appear to be comparable to many of the more intense bands in the visible region.


Molten Salt Ligand Field Lanthanide Element Actinide Element Trivalent Actinide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Young and J. C. White, Anal. Chem. 31, 1892, 1959.CrossRefGoogle Scholar
  2. 2.
    J. C. Sullivan, D. Cohen, and J. C. Hindman, J. Am. Chem. Soc. 79, 3672, 1957.CrossRefGoogle Scholar
  3. 3.
    W. T. Carnall and P. R. Fields, J. Am. Chem. Soc. 81, 4445, 1959.CrossRefGoogle Scholar
  4. 4.
    J. M. Florence, C. C. Allshouse, F. W. Glaze, and C. H. Hahner, J. Res. Natl. Bur. Standards 45, 121, 1950.Google Scholar
  5. 5.
    G. P. Smith and C. R. Boston, Ann. N. Y. Acad. Sci. 79, 930, 1960.CrossRefGoogle Scholar
  6. 6.
    J. Greenberg and L. J. Hallgren, Rev. Sci. Insts. 31, 444, 1960.CrossRefGoogle Scholar
  7. 7.
    J. Greenberg and L. J. Hallgren, J. Chem. Phys. 33, 900, 1960.CrossRefGoogle Scholar
  8. 8.
    J. G. Conway and J. B. Gruber, J. Inorg. Nucl. Chem. 14, 303, 1960.CrossRefGoogle Scholar
  9. 9.
    D. C. Steward, Argonne National Laboratory Report ANL-4812, 1952.Google Scholar
  10. 10.
    J. G. Conway and J. B. Gruber, J. Chem. Phys. 32, 1586, 1960.CrossRefGoogle Scholar
  11. 11.
    J. P. Elliott, B. R. Judd, and W. A. Runciman, Proc. Roy. Soc. (London) 240A, 509, 1957.Google Scholar
  12. 12.
    S. P. Cook and G. H. Dieke, J. Chem. Phys. 27, 1213, 1957.CrossRefGoogle Scholar
  13. 13.
    D. Gruen, S. Fried, P. Graf, and R. L. McBeth, Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy Vol. 28, Pergamon Press, New York, 1959, p. 112.Google Scholar
  14. 14.
    T. Moeller and J. C. Brantley, J. Am. Chem. Soc. 72, 5447, 1950.CrossRefGoogle Scholar
  15. 15.
    G. H. Dieke and L. A. Hall, J. Chem. Phys. 27, 465, 1957.CrossRefGoogle Scholar
  16. 16.
    D. M. Gruen, R. L. McBeth, J. Kooi, and W. T. Carnall, Ann. N. Y. Acad. Sci. 79, 941, 1960.CrossRefGoogle Scholar
  17. 17.
    G. N. Yakovlev and V. N. Kosyakov, Proceedings of the International Conference on the Peaceful Uses of Atomic Energy Vol. VII, United Nations, New York, 1956, p. 363.Google Scholar
  18. 18.
    R. A. Satten, D. Young, and D. M. Gruen, J. Chem. Phys. 33, 1140, 1960.CrossRefGoogle Scholar
  19. 19.
    G. H. Dieke and R. Sarup, J. Chem. Phys. 29, 741, 1958.CrossRefGoogle Scholar
  20. 20.
    J. G. Conway, J. Chem. Phys. 31, 1002, 1959.CrossRefGoogle Scholar
  21. 21.
    J. G. Conway, Private communication.Google Scholar
  22. 22.
    C. K. Jorgensen, Kgl. Danske Videnskab. Selskab, Mat-fyz. Medd. 29, No. 11, 1955.Google Scholar

Copyright information

© Society for Applied Spectroscopy 1962

Authors and Affiliations

  • W. T. Carnall
    • 1
  • P. R. Fields
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations