The Role of GTP-Binding Proteins in Receptor Activation of Phospholipase C

  • Eduardo G. Lapetina
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


Recent studies indicate that phospholipase C-induced degradation of the inositol phospholipids produces the formation of two molecules that have second messenger properties. The two molecules are 1, 2-diacylglycerol, which stimulates protein kinase C, and 1, 4, 5-inositol trisphosphate, which can mobilize Ca2+ from the endoplasmic reticulum to the cytosol. Inositol phospholipid degradation occurs in a wide variety of cells responding to specific stimuli. In platelets, it has been shown that agonists such as thrombin, collagen, platelet-activating factor, vasopressin, serotonin, prostaglandin-endoperoxides and thromboxane A2 stimulate the metabolism of the inositol phospholipids (Lapetina, 1986a). This receptor-coupled reaction seems to be an early step in the transduction mechanism of those agonists. Recent advances indicate that regulation of inositol phospholipid degradation might be modulated by GTP-binding proteins (Lapetina, 1986a,b; Cockcroft and Gomperts, 1985; Haslam and Davidson, 1984; Lapetina et al., 1986; Litosch et al., 1985; Wallace and Fain, 1985; Ui, 1984), much like the regulation of adenylate cyclase (Katada et al., 1984; Hanski and Gilman, 1982). In this case, two guanine nucleotide-binding regulatory proteins, Gs(Ns) and Gi (Ni), modulate the stimulation and inhibition of adenylate cyclase, respectively. These proteins contain three subunits recognized as α, β and γ Cholera toxin catalyzes ADP-ribosylation of the αs-subunit of Gs and stimulates adenylate cyclase. Pertussis toxin, on the other hand, ADP-ribosylates the αi-subunit of Gi.


Adenylate Cyclase Phorbol Ester Human Platelet Pertussis Toxin Inositol Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aktories, K. and Jakobs, K. H., Ni-mediated inhibition of human platelet adenylate cyclase by thrombin, Eur. J. Biochem. 145:333–338 (1984).CrossRefGoogle Scholar
  2. Brandt, S. J., Dougherty, R. W., Lapetina, E. G. and Niedel, J. E., Pertussis toxin inhibits chemotactic peptide-stimulated generation of inositol phosphates and lysosomal enzyme secretion in human leukemic (HL-60) cells, Proc. Natl. Acad. Sci. USA 82:3277–3280 (1985).CrossRefGoogle Scholar
  3. Cockcroft, S. and Gomperts, B. D., Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase, Nature 314:534–536 (1985).CrossRefGoogle Scholar
  4. Connolly, T. M. and Majerus, P. W., Protein kinase C phosphorylated human platelet inositol trisphosphate 5-phosphomonoesterase increasing phosphatase activity, Clin. Res. 34:656A (1986).Google Scholar
  5. Drummond, A. H. and MacIntyre, D. E., Protein kinase C as a bidirectional regulator of cell function, Trends Pharmacol. Sci. 6:233–234 (1985).CrossRefGoogle Scholar
  6. Hanski, E. and Gilman, A. G., The guanine nucleotide-binding regulatory component of adenylate cyclase in human erythrocytes, J. Cyclic Nucleotide Res. 8:323–336 (1982).Google Scholar
  7. Haslam, R. J. and Davidson, M. M., Receptor-induced diacylglycerol formation in permeabilized platelets; possible role for a GTP-binding protein, J. Recept. Res. 4:605–629 (1984).Google Scholar
  8. Katada, T., Bokoch, G. M., Northup, J. K., Ui, M. and Gilman, A. G., The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase: Properties and functions of the purified protein, J. Biol. Chem. 259:3568–3577 (1984).Google Scholar
  9. Lapetina, E. G., Inositide-Dependent and-Independent Mechanisms in Platelet Activation, in: “Receptors and Phosphoinositides,” J. W. Putney, ed., Alan R. Liss, Inc., New York (in press) (1986a).Google Scholar
  10. Lapetina, E. G., Effect of pertussis toxin on the phosphodiesteratic cleavage of the polyphosphoinositides by guanosine 5′-0-thiotriphosphate and thrombin in permeabilized human platelets, Biochim. Biophys. Acta (in press) (1986b).Google Scholar
  11. Lapetina, E. G., Reep, B. and Chang, K.-J., Stimulation of human platelets with trypsin, thrombin and collagen inhibit the pertussis toxin-induced ADP-ribosylation of a 41,000 dalton protein, Proc. Natl. Acad. Sci. USA (in press) (1986).Google Scholar
  12. Lapetina, E. G., Reep, B., Ganong, B. R. and Bell, R. M., Exogenous sn-1, 2-diacylglycerols containing saturated fatty acids function as bioregula-tors of protein kinase C in human platelets, J. Biol. Chem. 260:1358–1361 (1985).Google Scholar
  13. Litosch, I., Wallis, C. and Fain, J. N., 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands: Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown, J. Biol. Chem. 260:5464–5471 (1985).Google Scholar
  14. Lynch, C. J., Charest, R., Bocckino, S. B., Exton, J. H. and Blackmore, P. F., Inhibition of hepatic α1-adrenergic effects and binding by phorbol myristate acetate, J. Biol. Chem. 260:2844–2851 (1985).Google Scholar
  15. MacIntyre, D. E., McNicol, A. and Drummond, A. H., Tumour-promoting phorbol esters inhibit agonist-induced phosphatidate formation and Ca2+ flux in human platelets, FEBS Lett. 180:160–164 (1985).CrossRefGoogle Scholar
  16. Molina y Vedia, L. M. and Lapetina, E. G., Phorbol 12, 13-dibutyrate and 1-oleyl,-2-acetyl, diacylglycerol stimulate inositol trisphosphate dephos-phorylation in human platelets, J. Biol. Chem. (in press) (1986).Google Scholar
  17. Murayama, T. and Ui, M., Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts: Selective susceptibility to islet-activating protein, pertussis toxin, J. Biol. Chem. 260:7226–7233 (1985).Google Scholar
  18. Naccache, P. H., Milski, M. M., Volpi, M., Becker, E. L. and Sha’afi, R. I., Unique inhibitory profile of platelet activating factor induced calcium mobilization, polyphosphoinositide turnover and granule enzyme secretion in rabbit neutrophils towards pertussis toxin and phorbol ester, Biochem. Biophys. Res. Commun. 130:677–684 (1985).CrossRefGoogle Scholar
  19. Nishizuka, Y., Calcium, phospholipid turnover and transmembrane signalling, Philos. Trans. R. Soc. London [Biol.] 302:101–112 (1983).CrossRefGoogle Scholar
  20. Okajima, F., Katada, T. and Ui, M., Coupling of the guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin: A possible role of the toxin substrate in Ca2+-mobilizing receptor-mediated signal transduction, J. Biol. Chem. 260:6761–6768 (1985).Google Scholar
  21. O’Rourke, F. A., Halenda, S. P., Zavoico, G. B. and Feinstein, M. B., Inositol 1, 4, 5-trisphosphate releases Ca2+ from a Ca2+-transporting membrane vesicle fraction derived from human platelets, J. Biol. Chem. 260:956–962 (1985).Google Scholar
  22. Rittenhouse, S. E. and Sasson, J. P., Mass changes in Myoinositol trisphos-phate in human platelets stimulated by thrombin: Inhibitory effects of phorbol ester, J. Biol. Chem. 260:8657–8660 (1985).Google Scholar
  23. Ruggiero, M. and Lapetina, E. G., Leupeptin selectively inhibits human platelet responses induced by thrombin and trypsin; a role for proteolytic activation of phospholipase C, Biochem. Biophys. Res. Commun. 131:1198–1205 (1985).CrossRefGoogle Scholar
  24. Sternweis, P. C. and Robishaw, J. D., Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain, J. Biol. Chem. 259:13806–13813 (1984).Google Scholar
  25. Ui, M., Islet-activating protein, pertussis toxin: A probe for function of the inhibitory guanine nucleotide regulatory component of adenylate cyclase, Trends Pharmacol. Sci. 5:277–279 (1984).CrossRefGoogle Scholar
  26. Verghese, M. W., Smith, C. D. and Snyderman, R., Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor mediated polyphosphoinositide metabolism, Ca++ mobilization and cellular responses by leukocytes, Biochem. Biophys. Res. Commun. 127:450–457 (1985).CrossRefGoogle Scholar
  27. Volpi, M., Naccache, P. H., Molski, T. F. P., Shefcyk, J., Huang, C.-K., Marsh, M. L., Munoz, J., Becker, E. L. and Sha’afi, R. I., Pertussis toxin inhibits fMet-Leu-Phe-but not phorbol ester-stimulated changes in rabbit neutrophils: Role of G proteins in excitation response coupling, Proc. Natl. Acad. Sci. USA 82:2708–2712 (1985).CrossRefGoogle Scholar
  28. Wallace, M. A. and Fain, J. N., Guanosine 5′-0-thiotriphosphate stimulates phospholipase C activity in plasma membranes of rat hepatocytes, J. Biol. Chem. 260:9527–9530 (1985).Google Scholar
  29. Watson, S. P. and Lapetina, E. G., 1, 2-Diacylglycerol and phorbol ester inhibit agonist-induced formation of inositol phosphates in human platelets: Possible implications for negative feedback regulation of inositol phospholipid hydrolysis, Proc. Natl. Acad. Sci. USA 82:2623–2626 (1985).CrossRefGoogle Scholar
  30. Zavoico, G. B., Halenda, S. P., Sha’afi, R. I. and Feinstein, M. B., Phorbol myristate acetate inhibits thrombin-stimulated Ca2 mobilization and phosphatidylinositol 4, 5-bisphosphate hydrolysis in human platelets, Proc. Natl. Acad. Sci. USA 82:3859–3862 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Eduardo G. Lapetina
    • 1
  1. 1.Molecular Biology DepartmentBurroughs Wellcome Co.Research Triangle ParkUSA

Personalised recommendations