Advertisement

Muscarinic Acetylcholine Receptor-Linked Inositide Cycle in the Central Nervous System

  • Lucio A. A. van Rooijen
  • Jörg Traber
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)

Abstract

The inositide cycle (Fig.1) constitutes a second messenger system mediating the cellular response to activation of particular receptors (for reviews: Abdel-Latif, 1983; Berridge, 1984; Fisher et al., 1984a; Nishizuka, 1984). It is generally accepted that the initial event following receptor activation is phosphodiesteratic degradation of phosphatidylinositol 4, 5-bisphosphate (PIP2) to diacylglycerol (DG) and D-myo-inositol 1, 4, 5-trisphosphate (IP3). The latter is degraded by specific phosphatases eventually to myo-inositol. DG is readily phosphorylated to phosphatidate (PA), which is converted through a liponucleotide-intermediate to phosphatidylinositol (PI). In two sequential phosphorylation steps, PI is converted to PIP2, via phosphatidylinositol 4-phosphate (PIP), thus closing the inositide cycle. One way to analyze receptor-sensitive operation of the inositide cycle is to measure the appearance of labeled inositol phosphates in [3H]-inositol (pre)incubated cells. The use of Li+, which inhibits the last step of the degradation of IP3 to myo-inositol (Hallcher and Sherman, 1980), has proven valuable in this analysis (Berridge et al., 1982). Alternatively one can measure concurrent labeling of phospholipids from 32Pi. Receptor activation will then enhance incorporation of radiotracer into PA and PI.

Keywords

Muscarinic Receptor Nerve Ending Muscarinic Acetylcholine Receptor Inositol Trisphosphate Inositol Phospholipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A., Metabolism of phosphoinositides, in: Handbook of Neuroche-mistry, Vol. 3, pp. 91–131, Lajtha, A. (ed.), Plenum Press, New York (1983).Google Scholar
  2. Abdel-Latif, A. A., Akhtar, R. A. and Hawthorne, J. N., Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabeled with 32P-phosphate, Biochem. J. 161:61 (1977).Google Scholar
  3. Agranoff, B. W., Murthy, P. and Seguin, E. B., Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets, J. Biol. Chem. 258:2076 (1983).Google Scholar
  4. Aloyo, V. J., Zwiers, H. and Gispen, W. H., Phosphorylation of B-50 protein kinase and B-50 kinase, J. Neurochem. 41:649 (1983).CrossRefGoogle Scholar
  5. Aly, M. I. and Abdel-Latif, A. A., Studies of the effects of acetylcholine and antiepileptic drugs on 32P. incorporation into phospholipids of rat brain synaptosomes, Neurochem. Res. 7:159 (1982).CrossRefGoogle Scholar
  6. Amitai, G., Aissar, S., Balderman, D. and Sokolovsky, M., Affinity labeling of muscarinic receptors in rat cerebral cortex with a photolabile antagonist, Proc. Natl. Acad. Sci. 70:243 (1982).CrossRefGoogle Scholar
  7. Aronstam, R. S., Abood, L. G. and Hoss, W., Influence of sulfhydryl reagents and heavy metals on the functional state of the muscarinic acetylcholine receptor in rat brain, Molec. Pharmacol. 14:575 (1978).Google Scholar
  8. Aronstam, R. S. and Eldefrawi, M. E., Reversible conversion between affinity states for agonists of the muscarinic acetylcholine receptor from rat brain, Biochem. Pharmacol. 28:701 (1979).CrossRefGoogle Scholar
  9. Baven, P., 3H-Oxotremorine-M binding to membranes prepared from rat brain and heart: evidence for subtypes of muscarinic receptors, Eur. J. Pharmacol. 101:101 (1984).CrossRefGoogle Scholar
  10. Beaven, M. A., Rogers, J., Moore, J. P., Hesketh, T. R., Smith, G. A. and Metcalfe, J. C., The mechanism of the calcium signal and correlation with histamine release in 2H3 cells, J. Biol. Chem. 259:7129 (1984).Google Scholar
  11. Berridge, M. J., Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyze polyphosphoinositides instead of phosphatidylinositol, Biochem. J. 212:849 (1983).Google Scholar
  12. Berridge, M. J., Inositol trisphosphate and diacylglycerol as second messenger, Biochem. J. 220:345 (1984).Google Scholar
  13. Berridge, M. J., Downes, C. P. and Hanley, M. R., Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands, Biochem. J. 206:587 (1982).Google Scholar
  14. Birdsall, N. J. M. and Hulme, E. C., Biochemical studies on muscarinic acetylcholine receptors, J. Neurochem. 27:7 (1976).CrossRefGoogle Scholar
  15. Birdsall, N. J. M., The character of the muscarinic receptors in different regions of the rat brain, Proc. R. Soc. Lond. 207:1 (1980).CrossRefGoogle Scholar
  16. Birdsall, N. J. M., Hulme, E. C., Stockton, J., Burgen, A. S. V., Berrie, C. P., Hammer, R., Wong, E. H. F. and Zigmond, M. J., Muscarinic receptor subclasses: evidence from binding studies, in: CNS Receptors-From Molecular Pharmacology in Behavior, P. Mandel and F. V. DeFeudis (eds.), Raven Press, New York (1983).Google Scholar
  17. Brown, E., Kendall, D. A. and Nahorski, S. R., Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterization, J. Neurochem. 42:1379 (1984).CrossRefGoogle Scholar
  18. Brown, J. H., Goldstein, D. and Brown-Masters, S., The putative M1 muscarinic receptor does not regulate phosphoinositide hydrolysis, Molec. Pharmacol. 27:525 (1985).Google Scholar
  19. Burgess, G. M., Irvine, R. F., Berridge, M. J., McKinney, J. S. and Putney, J. W., Actions of inositol phosphates on Ca2+ pools in guinea pig hepa-tocytes, Biochem. J. 224:741 (1984).Google Scholar
  20. Conn, P. J and Sanders-Bush, E., Selective 5HT-2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex, Neuropharmacol. 23:993 (1984).CrossRefGoogle Scholar
  21. Daum, P. R., Downes, C. P. and Young, J. M., Histamine-induced inositol phospholipid breakdown mirrors H1-receptor density in brain, Eur. J. Pharmacol. 87:497 (1983).CrossRefGoogle Scholar
  22. Daum, P. R., Downes, C. P. and Young, J. M., Histamine stimulation of inositol 1-phosphate accumulation in lithium-treated slices from regions of guinea pig brain, J. Neurochem. 43:25 (1984).CrossRefGoogle Scholar
  23. Downes, C. P., Receptor-stimulated inositol phospholipid metabolism in the central nervous system, Cell Calcium 3:413 (1982).CrossRefGoogle Scholar
  24. Downes, C. P. and Michell, R. H., The polyphosphoinositide phosphodiesterase, Biochem. J. 198:133 (1981).Google Scholar
  25. Downes, C. P. and Wusteman, M. M., Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands, Biochem. J. 216:633 (1983).Google Scholar
  26. Durell, J., Sodd, M. A. and Friedel, R. O., Acetylcholine stimulation of the phosphodiesteratic cleavage of guinea pig brain phosphoinositides, Life Sci. 7:363 (1968).CrossRefGoogle Scholar
  27. Epstein, P. A., Prentki, M. and Attie, M. F., Modulation of intracellular Ca 2+ in the parathyroid cell: release of Ca2 from non mitochondrial pools by inositol trisphosphate, FEBS Lett. 188:141 (1985).CrossRefGoogle Scholar
  28. Fisher, S. K. and Agranoff, B. W., Calcium and the muscarinic phospholipid labeling effect, J. Neurochem. 34:1231 (1980).CrossRefGoogle Scholar
  29. Fisher, S. K. and Agranoff, B. W., Enhancement of the muscarinic synaptosomal phospholipid labeling effect by the ionophor A23187, J. Neurochem. 37:968 (1981).CrossRefGoogle Scholar
  30. Fisher, S. K. and Bartus, R. T., Regional differences in the coupling of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain, J. Neurochem. 40:1085 (1985).CrossRefGoogle Scholar
  31. Fisher, S. K., Klinger, P. D. and Agranoff, B. W., Muscarinic agonist binding and phospholipid turnover in brain, J. Biol. Chem. 258:7358 (1983).Google Scholar
  32. Fisher, S. K., Van Rooijen, L. A. A. and Agranoff, B. W., Renewed interest in the polyphosphoinositides, Trends Biochem. Sci. 9:53 (1984a).CrossRefGoogle Scholar
  33. Fisher, S. K., Figueiredo, J. C. and Bartus, R. T., Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine, J. Neurochem. 43:1171 (1984b).CrossRefGoogle Scholar
  34. Flynn, D. D. and Potter, L. T., Different effects of N-ethylmaleimide on M1 and M2 muscarinic receptors in rat brain, Proc. Natl. Acad. Sci. 82:580 (1985).CrossRefGoogle Scholar
  35. Garvey, J. M., Rossor, M. and Iversen, L. L., Evidence for multiple muscarinic receptor subtypes in human brain, J. Neurochem. 43:299 (1984).CrossRefGoogle Scholar
  36. Gil, D. W. and Wolfe, B. B., Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase, J. Pharmacol. Exp. Therap. 232:608 (1985).Google Scholar
  37. Gilbert, R., Rattan, S. and Goyal, R. K., Pharmacological identification activation and antagonism of two muscarinic receptors in the lower esophageal sphincter, J. Pharmacol. Exp. Therap. 230:284 (1984).Google Scholar
  38. Gispen, W. H., Phosphoprotein B-50 and phosphoinositides in brain synaptic plasma membranes: a possible feedback relationship, Biochem. Soc. Transact. 14:163 (1986).Google Scholar
  39. Godfrey, P. P., McClue, S. J., Minchin, M. C. W. and Young, M., Ru 24969, a 5-HT1 agonist, stimulates inositol phospholipid breakdown in rat brain slices, Br. J. Pharmacol. 84:112 (1985).Google Scholar
  40. Gonzales, R. A. and Crews, F. T., Characterization of the cholinergic stimulation of phosphoinositide hydrolysis in rat brain slices, J. Neuro-sci. 4:3120 (1984).Google Scholar
  41. Goyal, R. K. and Rattan, S., Neurohumoral, hormonal and drug receptors for the lower esophageal spincter, Gastroent. 74:598 (1978).Google Scholar
  42. Griffin, H. D., Hawthorne, J. N. and Sykes, M., A calcium requirement for the phosphatidylinositol response following activation of presynaptic muscarinic receptors, Biochem. Pharmacol. 28:1143 (1979).CrossRefGoogle Scholar
  43. Haga, K. and Haga, T., Purification of the muscarinic acetylcholine receptor from procine brain, J. Biol. Chem. 260:7927 (1985).Google Scholar
  44. Hallcher, L. M. and Sherman, W. R., The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain, J. Biol. Chem. 255:10896 (1980).Google Scholar
  45. Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V. and Hulme, E. C., Pirenzepine distinguishes between different subclasses of muscarinic receptors, Nature 283:90 (1980).CrossRefGoogle Scholar
  46. Hokin, M. R. and Hokin, L. E., Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices, J. Biol. Chem. 203:967 (1953).Google Scholar
  47. Horvath, E., Van Rooijen, L. A. A., Traber, J. and Spencer, D. G., Effects of N-ethylmaleimide on muscarinic acetylcholine receptor subtype autoradiography and inositide response in rat brain, Life Sci. in review.Google Scholar
  48. Irvine, R. F., How is the level of free arachidonic acid controlled in mammalian cells?, Biochem. J. 204:3 (1982).Google Scholar
  49. Irvine, R. F., Brown, K. D. and Berridge, M. J., Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells, Biochem. J. 221:269 (1984).Google Scholar
  50. Jacobson, M. D., Wüsteman, M. and Downes, C. P., Muscarinic receptors and hydrolysis of inositol phospholipids in rat cerebral cortex and parotid gland, J. Neurochem. 44:465 (1985).CrossRefGoogle Scholar
  51. Jafferji, S. S. and Michell, R. H., Effects of calcium-antagonistic drugs on the stimulation by carbamylcholine and histamine of phosphatidyli-nositol turnover in longitudinal smooth muscle of guinea pig ileum, Biochem. J. 160:163 (1976).Google Scholar
  52. Janowsky, A., Labarca, R. and Paul, S. M., Noradrenergic denervation increases 1-adrenoreceptor-mediated inositol-phosphate accumulation in the hippocampus, Eur. J. Pharmacol. 102:193 (1984a).CrossRefGoogle Scholar
  53. Janowsky, A., Labarca, R. and Paul, S. M., Characterization of neurotransmitter receptor-mediated phosphatidylinositol hydrolysis in the rat hippocampus, Life Sci. 35:1953 (1984b).CrossRefGoogle Scholar
  54. Jolles, J., Zwiers, H., Dekker, A., Wirtz, K. W. A. and Gispen, W. H., Corticotropin (1-24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain, Biochem J. 194:283 (1981).Google Scholar
  55. Jolles, J., Zwiers, H., Van Dongen, C. J., Schotman, P., Wirtz, K. W. A. and Gispen, W. H., Modulation of brain polyphosphoinositide metabolism by ACTH-sensitive protein phosphorylation, Nature 286:623 (1980).CrossRefGoogle Scholar
  56. Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F. and Williamson, J. R., myo-inositol 1, 4, 5-trisphosphate, a second messenger for the hormonal mobilization of intracellular Ca2+ in liver, J. Biol. Chem. 259:3077 (1984).Google Scholar
  57. Kendall, D. A. and Nahorski, S. R., Inositol phospholipid hydrolysis in rat cerebral cortical slices: II. Calcium requirement, J. Neurochem. 42:1388 (1984).CrossRefGoogle Scholar
  58. Kendall, D. A. and Nahorski, S. R., 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of antidepressants, J. Pharmacol. Exp. Therap. 233:473 (1985).Google Scholar
  59. Labarca, R., Janowsky, A., Patel, J. and Paul, S. M., Phorbol esters inhibit agonist-induced 3H inositol-1-phosphate accumulation in rat hippocampus slices, Biochem. Biophys. Res. Commun. 123:703 (1984).CrossRefGoogle Scholar
  60. Lazareno, S., Kendall, D. A. and Nahorski, S. R., Pirenzepine indicates heterogeneity of muscarinic receptors linked to cerebral inositol phospholipid metabolism, Neuropharmacol. 24:593 (1985).CrossRefGoogle Scholar
  61. Luthin, G. R. and Wolfe, B. B., Comparison of 3H-pirenzepine and 3H-quinu-clidinylbenzilate binding to muscarinic cholinergic receptors in rat brain, J. Pharmacol. Exp. Therap. 228:648 (1984a).Google Scholar
  62. Matsumoto, K., Uchida, S., Higuchi, H., Mizushima, A. and Yoshida, H., Effect of urea-treatment on agonist binding affinity of the muscarinic receptor, Life Sci. 33:963 (1983).CrossRefGoogle Scholar
  63. Michell, R. H., Inositol phospholipids and cell surface receptor function, Biochem. Biophys. Acta 415:81 (1975).CrossRefGoogle Scholar
  64. Miller, J. C., A study of the kinetics of the muscarinic effect on phosphatidylinositol and phosphatidic acid metabolism in rat brain synapto-somes, Biochem. J. 168:549 (1977).Google Scholar
  65. Miller, J. C. and Kowal, C. N., Effects of pentobarbital and veratridine on phosphatidylinositol and phosphatidate metabolism in rat parotid acinar cells, Biochem. Pharmacol. 32:2237 (1983).CrossRefGoogle Scholar
  66. Minneman, K. P. and Johnson, R. D., Characterization of alpha-1 adrenergic receptors linked to 3H-inositol metabolism in rat cerebral cortex, J. Pharmacol. Exp. Therap. 230:317 (1984).Google Scholar
  67. Nishizuka, Y., Turnover of inositol phospholipids and signal transduction, Science 225:1365 (1984).CrossRefGoogle Scholar
  68. Prentki, M. and Wollheim, C. B., Cytosolic free Ca2+ in insulin secreting cells and its regulation by isolated organelles, Experientia 40:1052 (1984).CrossRefGoogle Scholar
  69. Schacht, J. and Agranoff, B. W., Effects of acetylcholine on labeling of phosphatidate and phosphoinositides by 32P-orthophosphate in nerve ending fractions of guinea pig cortex, J. Biol. Chem. 247:771 (1972).Google Scholar
  70. Schoepp, D. D., Knepper, S. M. and Rutledge, C. O., Norepinephrine stimulation of phosphoinositide hydrolysis in rat cerebral cortex is associated with the alpha1 adrenoreceptor, J. Neurochem. 43:1758 (1984).CrossRefGoogle Scholar
  71. Schrama, L. H., De Graan, P. N. E., Eichberg, J. and Gispen, W. H., Feedback control of the inositol phospholipid response in rat brain is sensitive to ACTH, Eur. J. of Pharmacol. 121:403 (1986).CrossRefGoogle Scholar
  72. Shukla, S. D., Buxton, D. B., Olson, M. S. and Hanahan, D. J., Acetylglyceryl ether phosphorylcholine. A potent activator of hepatic phosphoinositide metabolism and glycogenolysis, J. Biol. Chem. 258:10212 (1983).Google Scholar
  73. Smith, T. L. and Yamamura, H. I., Carbachol stimulation of phosphatidic acid synthesis: competitive inhibition by pirenzepine in synaptosomes from rat cerebral cortex, Biochem. Biophys. Res. Commun. 130:282 (1985).CrossRefGoogle Scholar
  74. Somlyo, A. V., Bond, M., Somlyo, A. P. and Scarpa, A., Inositol trisphos-phate induced calcium release and contraction in vascular smooth muscle, Proc. Natl. Acad. Sci. 82:5231 (1985).CrossRefGoogle Scholar
  75. Spedding, M., Calcium antagonist subgroups, Trends Pharmacol. Sci. 6:109 (1985).CrossRefGoogle Scholar
  76. Spencer, D. G., Horvath, E., Luiten, P., Schuurman, T. and Traber, J., Novel approaches in the study of brain acetylcholine function: Neuropharmacology, neuroanatomy and behavior, in: Senile dementia of the Alzheimer type, Advances in applied neurological sciences, Vol. 2, pp. 325–354, J. Traber and W. H. Gispen (eds.), Springer Verlag, Berlin, FRG (1985).CrossRefGoogle Scholar
  77. Spencer, D. G., Horvath, E. and Traber, J., Direct autoradiographic determination of M1 and M2 muscarinic acetylcholine receptor distribution in the rat brain: relation to cholinergic nuclei and projections, Brain Res. in press (1986).Google Scholar
  78. Strebb, H., Irvine, R. F., Berridge, M. J. and Schulz, I., Release of Ca2+ from nonmitrochondrial intracellular store in pancreatic acinar cells by inositol 1, 4, 5-trisphosphate, Nature 306:67 (1983).CrossRefGoogle Scholar
  79. Thomas, A. P., Marks, J. S., Coll, K. E. and Williamson, J. R., Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes, J. Biol. Chem. 258:5716 (1983).Google Scholar
  80. Van Rooijen, L. A. A., Polyphosphoinositide phosphodiesterase: characterization and physiological significance in brain. Dissertation Utrecht. (1984).Google Scholar
  81. Van Rooijen, L. A. A. and Traber, J., Muscarinic cholinergic enhancement of inositide turnover in cerebral nerve endings is not mediated by calcium uptake, Biochem. Pharmacol., in press (1986).Google Scholar
  82. Van Rooijen, L. A. A., Seguin, E. B. and Agranoff, B. W., Phosphodiesteratic breakdown of endogenous polyphosphoinositides in nerve ending membranes, Biochem. Biophys. Res. Commun. 112:919 (1983).CrossRefGoogle Scholar
  83. Van Rooijen, L. A. A., Hajra, A. K. and Agranoff, B. W., Tetraenoic species are conserved in muscarinically enhanced inositide turnover, J. Neurochem. 44:540 (1985a).CrossRefGoogle Scholar
  84. Van Rooijen, L. A. A., Rossowska, M. and Bazan, N. G., Inhibition of phospha-tidylinositol-4-phosphate kinase by its product phosphatidylinositol-4, 5-bisphosphate, Biochem. Biophys. Res. Commun. 126:150 (1985b).CrossRefGoogle Scholar
  85. Van Rooijen, L. A. A., Dompert, W. U., Horvath, E., Spencer, D. G. and Traber, J., Pharmacological aspects of the inositide response in the central nervous system: the muscarinic acetylchoine receptor, in: Progress in brain research, Gispen, W. H. and Routenberg, A. (eds), Elsevier, Amsterdam, in press (1986a).Google Scholar
  86. Wamsley, J. K., Gehlert, D. R., Roeske, W. R. and Yamamura, H. I., Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after direct labeling with 3H-QNB and 3H-pirenzepine, Life Science 34:1395 (1984).CrossRefGoogle Scholar
  87. Watson, M., Yamamura, H. I. and Roeske, W. R., A unique regulatory profile and regional distribution of 3H-pirenzepine binding in the rat provide evidence for distinct M1 and M2 muscarinic receptor subtypes, Life Sci. 32:3001 (1983).CrossRefGoogle Scholar
  88. Wenger, D. A., Parthasarthy, N. and Aronstam, R. S., Regional heterogeneity of muscarinic acetylcholine receptors from rat brain in retained after detergent solubilization, Neurosci. Lett. 54:65 (1985).CrossRefGoogle Scholar
  89. Yamamura, H. I., Watson, M. and Roeske, W. R., 3H-Pirenzepine specifically labels a high affinity muscarinic receptor in the rat cerebral cortex, in: CNS receptors — From molecular pharmacology in behavior, pp. 331–336, P. Mandel and F. V. DeFeudis (eds.), Raven Press, New York (1983).Google Scholar
  90. Yamamoto, H. and Van Breemen, C., Inositol-l, 4, 5-trisphosphate releases calcium from skinned cultured smooth muscle cells, Biochem. Biophys. Res. Commun. 130:270 (1985).CrossRefGoogle Scholar
  91. Yandrasitz, J. R. and Segal, S., The effect of MnCl2 on the basal and ace-tylcholine-stimulated turnover of phosphatidylinositol in synaptosomes, FEBS Lett. 108:270 (1979).CrossRefGoogle Scholar
  92. Zwiers, H., Schotman, P. and Gispen, W. H., Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membranes, J. Neurochem. 34:1689 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Lucio A. A. van Rooijen
    • 1
  • Jörg Traber
    • 1
  1. 1.Neurobiology DepartmentTroponwerke GmbH and Co. KGCologne 80Federal Republic of Germany

Personalised recommendations