Polyunsaturated Fatty Acids and Inositol Phospholipids at the Synapse in Neuronal Responsiveness

  • Nicolas G. Bazan
  • Dale L. Birkle
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


Neuronal communication involves synthesis, release, interaction with receptors, and degradation of a wide variety of chemical mediators at synapses. These mediators comprise neurotransmitters and other neuroactive substances and in some instances, two or more of these substances coexist in a given nerve ending. However, only one-tenth or less of the chemical mediators of the nervous system have been identified to date, and our understanding of how the processing of information involves the components of excitable membranes is just beginning.


Free Fatty Acid Arachidonic Acid Status Epilepticus Docosahexaenoic Acid Electroconvulsive Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adesuyi, S. A., Cockrell, C. S., Gamache, D. A. and Ellis, E. F., Lipoxygenase metabolism of arachidonic acid in brain, J. Neurochem. 34:1331 (1986).Google Scholar
  2. Agranoff, B. W. and Fisher, S. K., Stimulated phospholipid labeling in nerve ending preparations: Studies on localization and biochemical mechanism, in: “Phospholipids in the Nervous System”, L. Horrocks, ed., Raven Press, New York (1982).Google Scholar
  3. Aveldano, M. I. and Bazan, N. G., Rapid production of diacylglycerols enriched in arachidonate and stearate during early brain ischemia, J. Neurochem. 25:919 (1975a).CrossRefGoogle Scholar
  4. Aveldano, M. I. and Bazan, N. G., Differential lipid deacylation during brain ischemia in a homeotherm and a poikilotherm. Content and composition of free fatty acids and triacylglycerols, Brain Res. 100:99 (1975b).CrossRefGoogle Scholar
  5. Aveldano, M. I. and Bazan, N. G., Acyl groups, molecular species and labeling by 14C-glycerol and 3H-arachidonic acid of vertebrate retina gly-cerolipids, Adv. Exp. Med. Biol. 83:397 (1977).CrossRefGoogle Scholar
  6. Aveldano, M. I. and Bazan, N. G., Alpha-methyl-p-Tyrosine inhibits the production of free arachidonic acid and diacylglycerols in brain after a single electroconvulsive shock, Neurochem. Res. 4:213 (1979).CrossRefGoogle Scholar
  7. Baker, R. and Thompson, W., Positional distribution and turnover of fatty acids in phosphatidylcholine and phosphatidylethanolamine in rat brain in vivo, Biochim. Biophys. Acta 270:489 (1972).CrossRefGoogle Scholar
  8. Bazan, H. E. P., Ridenour, B., Birkle, D. L. and Bazan, N. G., Unique metabolic features of docosahexaenoate metabolism related to functional roles in brain and retina, in: “Molecular and Biochemical Pharmacology of Phospholipids in the Nervous System”, L. Horrocks, L. Freysz, and G. Toffano, eds., Liviana Press, Italy (in press) (1986).Google Scholar
  9. Bazan, N. G., Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain, Biochim. Biophys. Acta 218:1 (1970).CrossRefGoogle Scholar
  10. Bazan, N. G., Changes in free fatty acids of brain by drug-induced convulsions, electroshock and anesthesia, J. Neurochem. 18:1379 (1971a).CrossRefGoogle Scholar
  11. Bazan, N. G., Phospholipases A1 and A2 in brain subcellular fractions, Acta Physiol. Latino. Amer. 21:101 (1971b).Google Scholar
  12. Bazan, N. G., Modifications in the free fatty acids of developing rat brain, Acta Physiol. Latino. Amer. 21:15 (1971c).Google Scholar
  13. Bazan, N. G., 1976, Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock, Adv. Exp. Med. Biol. 72:317 (1976).Google Scholar
  14. Bazan, N. G. and Rakowski, H., Increased levels of brain free fatty acids after electroconvulsive shock, Life Sci. 9:501 (1970).CrossRefGoogle Scholar
  15. Bazan, N. G. and Rodriguez de Turco, E. B. Membrane lipids in the pathogenesis of brain edema: Phospholipids and arachidonic acid, the earliest membrane components changed at the onset of ischemia, Adv. Neurol. 28: 197 (1980).Google Scholar
  16. Bazan, N. G., Aveldano de Caldironi, M. I., Cascone de Suarez, G. D. and Rodriguez de Turco, E. B., Transient modifications in brain free arachidonic acid in experimental animals during convulsions, in: “Neurochemical and Clinical Neurology”, L. Batistin, G. Hashim, and A. Lajtha, eds., Alan R. Liss, New York (1980b).Google Scholar
  17. Bazan, N. G., Aveldano de Caldironi, M. I. and Rodriguez de Turco, E. B., Rapid release of free arachidonic acid in the central nervous system due to stimulation, Prog. Lipid Res. 20:523 (1982a).CrossRefGoogle Scholar
  18. Bazan, N. G., Morelli de Liberti, S. M. and Rodriguez de Turco, E. B., Arachidonic acid and arachidonoyl-diglycerides increase in rat cerebrum during bicuculline-induced status epilepticus, Neurochem. Res. 7:839 (1982b).CrossRefGoogle Scholar
  19. Bazan, N. G., Rodriguez de Turco, E. B. and Morelli de Liberti, S. G., Free arachidonic acid and membrane lipids in the central nervous system during bicuculline-induced status epilepticus, Adv. Neurol. 34:305 (1983).Google Scholar
  20. Bazan, N. G., Morelli de Liberti, S. G., Rodriguez de Turco, E. B. and Pediconi, M. F., Free arachidonic and docosahexaenoic acid accumulation in the central nervous system during stimulation, in: “Neural Membranes”, G. Y. Sun, N. G. Bazan, J. Y. Wu, G. Porcellati, A. Y. Sun, eds., Humana Press, New Jersey (1983a).Google Scholar
  21. Bazan, N. G., Birkle, D. L. and Reddy, T. S., Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina, Biochem. Biophys. Res, Comm. 125:741 (1984).CrossRefGoogle Scholar
  22. Bazan, N. G., Birkle, D. L. and Reddy, T. S., Biochemical and nutritional aspects of the metabolism of polyunsaturated fatty acids and phospholipids in experimental models of retinal degradation, in: “Retinal Degeneration: Contemporary Experimental and Clinical Studies,” M. M. LaVail, G. Anderson, J. Hollyfield, eds., Alan R. Liss, Inc., New York (1985a).Google Scholar
  23. Bazan, N. G., Reddy, T. S., Redmond, T. M., Wiggert B. and Chader, G. J., Endogenous fatty acids are covalently and non-covalently bound to inter-photoreceptor retinoid-binding protein in the monkey retina, J. Biol. Chem. 260:13677 (1985b).Google Scholar
  24. Bazan, N. G., Birkle, D. L., Wilson, T. and Reddy, T. S., The accumulation of free arachidonic acid, diacylglycerols, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy, Adv. Neurol. 44:879 (1986).Google Scholar
  25. Bazan, N. G., Reddy, T. S. and Scott, B. L., Quantitative analysis of acyl group composition of brain phospholipids and neutral lipids, in: “Neuromethods,” A. Boulton, ed., Humana Press, New Jersey, (in press) (1987).Google Scholar
  26. Berridge, M. J. Inositol trisphosphate and diacylglycerols as second messengers, Biochem. J. 220:345 (1984).Google Scholar
  27. Berridge, M. J. and Irvine, R. F., Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315 (1984).CrossRefGoogle Scholar
  28. Berrige, M. J., Downes, C. P. and Hanley, M. R., Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands, Biochem. J. 206:587 (1982).Google Scholar
  29. Birdsall, N. J. M. and Hulme, E. C., Muscarinic receptor subclasses, Trends Pharm. Sci. 4:459 (1983).CrossRefGoogle Scholar
  30. Birdsall, N. J. M., Hulme, E. C. and Burgen, A., The character of muscarinic receptors in different regions of the rat brain, Proc. Roy Soc. Lond B. Biol. Sci. 207:1 (1980).CrossRefGoogle Scholar
  31. Birkle, D. L. and Bazan, N. G. Lipoxygenase and cyclooxygenase reaction products and incorporation into glycerolipids of radiolabeled arachidonic acid in the bovine retina, Prostaglandins 27:203 (1984a).CrossRefGoogle Scholar
  32. Birkle D. L. and Bazan, N. G., Effects of K depolarization on the synthesis of prostaglandins and hydroxyeicosatetra(5, 6, ll, 14)enoic acids (HETE) in the rat retina. Evidence for esterification of 12-HETE in lipids, BIochim. Biophys. Acta 795:564 (1984b).CrossRefGoogle Scholar
  33. Birkle, D. L. and Bazan, N. G., The arachidonic acid cascade and phospholipid and docosahexaenoic acid metabolism in the retina, Prog. Retinal Res. 5:309 (1986).CrossRefGoogle Scholar
  34. Brown, J. H. and Brown, S. L., Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoino-sitide metabolism, J. Biol. Chem. 259:3777 (1984).Google Scholar
  35. Cabot, M. C. and Gatt, S., The hydrolysis of triacylglycerol and diacylgly-cerol by a rat brain microsomal lipase with an acidic pH, Biochim. Biophys. Acta 530:508 (1978).CrossRefGoogle Scholar
  36. Collins, R. C. and Olney, J. W., Focal cortical seizures cause distant thalamic lesions, Science 218:117 (1982).Google Scholar
  37. Collins, R. C., Olney, J. W. and Lothman, E. W., Metabolic and pathologic consequences of focal seizures, in: “Epilepsy,” A. A. Ward, J. K. Penry, eds., Raven Press, New York, (1983a).Google Scholar
  38. Collins, R. C., Lothman, E. W. and Olney, J. W., Status epilepticus in the limbic system: Biochemical and pathological changes, Adv. Neurol. 34: 277 (1983b).Google Scholar
  39. Cook, H. W., Clarke, J. T. R. and Spence, M. W., Involvement of triacylgly-cerols in the metabolism of fatty acids by cultured neuroblastoma and glioma cells, J. Lipid Res. 23:1292 (1982).Google Scholar
  40. Crockard, H. A., Bhakoo, K. K. and Lascelles, P. T., Regional prostaglandin levels in experimental ischemia, J. Neurochem. 38:1311 (1982).CrossRefGoogle Scholar
  41. Dashieff, R. M. and McNamara, J. O., Evidence for an agonist independent down regulation of hippocampal muscarinic receptors in kindling, Brain Res. 195:345 (1980).CrossRefGoogle Scholar
  42. Dasheiff, R. M., Byrne, M. D., Patrone, V. and McNamara, J. O., Biochemical evidence of decreased muscarinic cholinergic neuronal communication following amygdala kindled seizures, Brain Res. 206:233 (1981).CrossRefGoogle Scholar
  43. Dashieff, R. M., Savage, D. D. and McNamara, J. O., Seizures down-regulate muscarinic cholinergic receptors in hippocampal formation, Brain Res. 235:327 (1982).CrossRefGoogle Scholar
  44. Ellis, E. F., Wright, K. F., Wei, E. P. and Kontos, H. A., Cyclooxygenase products of arachidonic acid metabolism in cat cerebral cortex after experimental concussive brain injury, J. Neurochem. 37:892 (1981).CrossRefGoogle Scholar
  45. Fishman, R. A., Steroids in the treatment of brain edema, New England J. Med. 306:359 (1982).CrossRefGoogle Scholar
  46. Flower, R. J. and Blackwell, G. J., Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation, Nature 278:456 (1979).CrossRefGoogle Scholar
  47. Forstermann, U., Heldt, R., Friedhelm, K. and Hertting, G., Potential anticonvulsive properties of endogenous prostaglandins formed in mouse brain, Brain Res. 240:303 (1982).CrossRefGoogle Scholar
  48. Forstermann, U., Heldt, R. and Hertting, G., Increase in brain prostaglandins during convulsions is due to increased neuronal activity and not to hypoxia, Arch. Int. Pharmacodyn. Ther. 263:180 (1983).Google Scholar
  49. Gaudet, R. J. and Levine, L., Transient cerebral ischemia and brain prostaglandins, Biochem. Biophys. Res. Comm. 86:839 (1979).CrossRefGoogle Scholar
  50. Gaudet, R. J., Alam, I. and Levine, L., Accumulation of cyclooxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occulsion, J. Neurochem. 35:653 (1980).CrossRefGoogle Scholar
  51. Ginobile, M. S., Rodriguez de Turco, E. B. and Barrantes, F. J., Asymmetry of diacylglycerol metabolism in rat cerebral hemispheres, J. Neurochem. 46:1382 (1986).CrossRefGoogle Scholar
  52. Hirata, J., Schiffmann, E., Venkatasubramanian, K., Soloman, D. and Axelrod, J., Phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoid, Proc. Natl. Acad. Sci. USA, 77:2583 (1980).Google Scholar
  53. Honchar, M. P., Olney, J. W. and Sherman, W. R., Systemic cholinergic agents induce injury by cholinergic neuronal communication following amygdala kindled seizures, Brain Res. 206:233 (1983).Google Scholar
  54. Iannotti, F., Crockard, A., Ladds, G. and Symon, L., Are prostaglandin levels altered in experimental ischemic edema in gerbils, Stroke 12:301 (1981).CrossRefGoogle Scholar
  55. Ikeda, M., Yoshida, S., Busto, R., Santigo, M. and Ginsberg, M., Polyphosphoinositides as a probable source of brain free fatty acid accumulated at the onset of ischemia, J. Neurochem. 47:123 (1986).CrossRefGoogle Scholar
  56. Irvine, R. F., Letcher, A. J., Heslop, J. P. and Berridge, M. J., The inositol tris/tetrakisphosphate pathway-demonstration of Ins(1, 4, 5)P3 3-kinase activity in animal tissues, Nature 320:631 (1986).CrossRefGoogle Scholar
  57. Kikkawa, U., Takai, Y., Tanaka, Y., Miyake, R. and Nishizuka, Y., Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters, J. Biol. Chem. 257:7841 (1982).Google Scholar
  58. Lindgren, J. A., Hokfelt, T., Dahlen, S. E., Patrono, C. and Samuelsson, B., Leukotrienes in the rat central nervous system, Proc. Natl. Acad. Sci. USA 81:6212 (1984).CrossRefGoogle Scholar
  59. Marion, J. and Wolfe, L. S., Increase in vivo of unesterified fatty acids, prostaglandin F but not thromboxane B2 in rat brain during drug induced convulsions, Prostaglandins 16:99 (1978).CrossRefGoogle Scholar
  60. Moskowitz, M. A., Kiwak, K. J., Hekimian, K. and Levin, L., Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion, Science 224:886 (1983).CrossRefGoogle Scholar
  61. Neuringer, M., Connor, W. E., Van Petten, C. and Barstad, L., Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys, J. Clin. Invest. 73:272 (1984).CrossRefGoogle Scholar
  62. Olney, J. W., Gubareff, T. and Labruyere, J., Seizure-related brain damage in lithium-treated rats, Science 220:323 (1983).CrossRefGoogle Scholar
  63. Pediconi, M. F., Rodriguez de Turco, E. B. and Bazan, N. G., Reduced labeling of brain phosphatidylinositol, triacylglycerols and diacylglcyerols by [1-l4C] arachidonic acid after electroconvulsive shock. Potentiation of the effect by adrenergic drugs and comparison with palmitic acid labeling, Neurochem. Res. 2:217 (1986).CrossRefGoogle Scholar
  64. Politi, L. E., Rodriguez de Turco, E. B. and Bazan, N. G., Dexamethasone effect on free fatty acid and diacylglycerol accumulation during experimentally-induced vasogenic brain edema, Neurochem. Pathol. 3:249 (1985).Google Scholar
  65. Reddy, T. S. and Bazan, N. G., Kinetic properties of arachidonoyl-coenzyme A synthetase in rat brain microsomes, Arch. Biochem. Biophys. 226:125 (1983).CrossRefGoogle Scholar
  66. Reddy, T. S. and Bazan, N. G., Synthesis of docosahexaenoyl-, arachidonoyl-and palmitoyl-coenzyme A in ocular tissues, Exp. Eye Res. 41:87 (1985a).CrossRefGoogle Scholar
  67. Reddy, T. S. and Bazan, N. G., Synthesis of arachidonoyl coenzyme A and docosahexaenoyl coenzyme A in synaptic plasma membranes of cerebrum, cerebellum and brain stem of rat brain, J. Neurosci. Res. 13:381 (1985b).CrossRefGoogle Scholar
  68. Reddy, T. S., Sprecher, T. and Bazan, N. G., Long-chain acyl coenzyme A synthetase from rat brain microsomes: Kinetic studies using [1-14C]doso-sahexaenoic acid substrate, Eur. J. Biochem. 145:21 (1984).CrossRefGoogle Scholar
  69. Ribak, C. E. and Reiffenstein, R. J., Selective inhibitory synapse loss in chronic cortical slabs: A morphological basis for epileptic susceptibility, Can. J. Physiol. Pharmacol. 50:864 (1982).CrossRefGoogle Scholar
  70. Rodriguez de Turco, E. B., Morelli de Liberti, S. and Bazan, N. G., Stimulation of free fatty acid and diacylglycerol accumulation in cerebrum and cerebellum during bicuculline-induced status epilepticus, J. Neurochem. 40:252 (1983).CrossRefGoogle Scholar
  71. Savage, D. D. and McNamara, J. O., Kindled seizures selectively reduce a subpopulation of [3H]quinuclidinyl benzilate binding sites in rat dentate gyrus, J. Pharm. Exp. Therap. 222:670 (1982).Google Scholar
  72. Seisjo, B. K., Ingvar, M. and Westerberg, E., The influence of bicuculline-induced seizures on free fatty acid concentrations in cerebral cortex, hippocampus, and cerebellum, J. Neurochem. 39:796 (1982).CrossRefGoogle Scholar
  73. Schwartzkroin, P. A. and Pedley, T. A., Slow depolarizing potentials in “Epileptic” neurons, Epilepsia 20:267 (1979).CrossRefGoogle Scholar
  74. Spanguolo, C., Sautebin, L., Galli, G., Racagni, G., Galli, C., Mazzari, S. and Finesso, M., PGF, thromboxane B2 and HETE levels in gerbil brain cortex after ligation of common cartoid arteries and decapitation, Prostaglandins 18:53 (1979).CrossRefGoogle Scholar
  75. Steinhauer, H., Anhut, H. and Hertting, G., The synthesis of prostaglandins and thromboxane in the mouse brain in vivo: Influence of drug induced convulsions, hypoxia and the anticonvulsants trimethadione and diazepam, Naunyn-Schmiedebergs Arch. Pharmacol. 310:53 (1979).CrossRefGoogle Scholar
  76. Streb, H., Bayerdorffer, E., Haase, W., Irvine, R. F. and Schulz, I., Effect of inositol-1, 4, 5-trisphosphate on isolated subcellular fractions of rat pancreas, J. Membrane Biol. 81:241 (1984).CrossRefGoogle Scholar
  77. Traub, R. D. and Llinas, R., Hippocampal pyramidal cells: Significance of dendritic ion conductances for neuronal function and epileptogenesis, J. Neurophysiol. 42:476 (1979).Google Scholar
  78. Van Rooijen, L. A. A., Vadnal, R., Dobard, P. and Bazan, N. G., Enhanced inositide turnover in brain during bicuculline-induced status epilepticus, Biochem. Biophys. Res. Comm. 136:827 (1986).CrossRefGoogle Scholar
  79. Willmore, J. L. and Rubin, J. J., Antiperoxidant pretreatment and iron-induced epileptiform discharges in the rat: EEG and histopathologic studies, Neurology 31:62 (1981).CrossRefGoogle Scholar
  80. Willmore, J. L., Sypert, G. W. and Munson, J. B., Recurrent seizures induced by cortical iron injection: A model of post-traumatic epilepsy, Ann. Neurol. 4:329 (1978).CrossRefGoogle Scholar
  81. Woelk, H. and Porcellati, G., Subcellular distribution and kinetics properties of rat brain phospholipase A1 and A2, Hoppe-Seyler’s Z. Physiol. Chem. 354:90 (1973).CrossRefGoogle Scholar
  82. Wong, R. K. S. and Prince, D. A., Dendritic mechanisms underlying pencillin-induced epileptiform activity, Science 204:1228 (1979).CrossRefGoogle Scholar
  83. Zatz, M. and Roth, R., Electroconvulsive shock raises prostaglandins F in rat cerebral cortex, Biochem. Pharmacol. 24:2101 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Nicolas G. Bazan
    • 1
  • Dale L. Birkle
    • 1
  1. 1.LSU Eye CenterLouisiana State University Medical SchoolNew OrleansUSA

Personalised recommendations