Advertisement

“Substance M”, A Serotonin Modulator Candidate from Human Urine?

  • K. G. Walton
  • T. McCorkle
  • T. Hauser
  • C. MacLean
  • R. K. Wallace
  • J. Ieni
  • L. R. Meyerson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)

Abstract

Intense interest in serotonin (5-hydroxytryptamine, 5-HT) stems from the involvement of this biogenic amine in an extraordinary range of physiological functions. (See, for example, the five-volume series edited by Essman, 1977–1979.) Most tissues and organs are affected by 5-HT, either through serotonergic neurons or following its release from blood platelets and other non-neuronal sites. Both platelets and serotonergic neurons have mechanisms for the active uptake of 5-HT, and the platelet has become a model for studying aspects of the regulation of 5-HT levels. The discovery that platelets of endogenously depressed patients have a decreased number of high-affinity binding sites for [3H]-imipramine (Briley et al., 1980; Paul et al., 1981) has kindled research on the imipramine binding site, and this site is now thought to effect a modulation of 5-HT uptake (Wennogle and Meyerson, 1983, 1985; Meyerson et al., submitted).

Keywords

Endogenous Ligand Serotonergic Neuron Amyl Alcohol Serotonin Uptake Urine Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, K. I., Ieni, J. R. and Meyerson, L. R., Biochim. Biophys. Acta., submitted.Google Scholar
  2. Abraham, K. I. and Meyerson, L. R., Isolation of a plasma acid protein modulator for the human platelet imipramine binding site, Society for Neuroscience Abstracts 11: 749 (1985).Google Scholar
  3. Badawi, K., Wallace, R. K., Orme-Johnson, D. and Rouzere, A. M., Electrophysiologic characteristics of respiratory suspension periods occuring during the practice of the Transcendental Meditation program, Psychosomatic Medicine 46: 267 (1984).Google Scholar
  4. Barbaccia, M. L., Gandolfi, O., Chuang, D. M. and Costa, E., Modulation of neuronal serotonin uptake by a putative endogenous ligand of imipramine recognition sites, Proc. Natl. Acad. Sci. USA 80: 5134 (1983).CrossRefGoogle Scholar
  5. Bloom, F. E., Open Questions: a summary of the workshop discussions, in: “Beta-Carbolines and Tetrahydroisoquinolines” (Progress in Clinical and Biological Research; v. 90), P. Bloom, J. Barchas, M. Sandler and Usdin, E., eds., Alan R. Liss, New York (1982).Google Scholar
  6. Briley, M., Imipramine binding: its relationship with serotonin uptake and depression, in: “Neuropharmacology of Serotonin”, A. R., Green, ed., Oxford University Press, New York (1985).Google Scholar
  7. Briley, M. S., Langer, S. Z., Raisman, R., Sechter, D. and Zarifian, E., Tritiated imipramine binding sites are decreased in platelets of untreated depressed patients, Science, 209: 303 (1980).CrossRefGoogle Scholar
  8. Bujatti, M. and Riederer, P., Serotonin, noradrenaline and dopamine metabolites in the Transcendental Meditation technique, J. Neural Transm., 39: 257 (1976).CrossRefGoogle Scholar
  9. de Montigny, C. and Blier, P., Electrophysiological aspects of serotonin neuropharmacology: implications for antidepressant treatments, in: “Neuropharmacology of Serotonin”, A. R. Green, ed., Oxford University Press, New York (1985).Google Scholar
  10. Clow, A., Glover, V., Armando, I. and Sandler, M., New endogenous benzodiazepine receptor ligand in human urine: identity with endogenous monoamine oxidase inhibitor? Life Sciences, 33: 735 (1983).CrossRefGoogle Scholar
  11. Dillbeck, M. C., Orme-Johnson, D. W. and Wallace, R. K., Frontal EEG coherence, H-reflex recovery, concept learning, and the TM-Sidhi program, Internat. J. Neurosci., 15: 151 (1981).CrossRefGoogle Scholar
  12. Essman, W. B. (Editor), “Serotonin in Health and Disease”, Vols I-V, Spectrum Publications, Inc., New York (1977–1979).Google Scholar
  13. Farrow, J. T. and Hebert, J. R., Breath suspension during the transcendental meditation technique, Psychosomatic Medicine 44: 131 (1982).Google Scholar
  14. Graeff, F. G., Zuardi, A. W., Giglio, J. S., Lima Filho, E. C. and Karniol, I. G., Effect of metergoline on human anxiety, Psychopharmacology 86: 334 (1985).CrossRefGoogle Scholar
  15. Jevning, R., Wilson, A. F. and Davidson, J. M., Adrenocortical activity during meditation, Hormones and Behavior, 10: 54 (1978a).CrossRefGoogle Scholar
  16. Jevning, R., Wilson, A. F. and Van der Laan, E. F., Plasma prolactin and growth hormone during meditation, Psychosom. Med. 40: 329 (1978b).Google Scholar
  17. Kesterson, J. and Clinch, N., Peripheral and central control mechanisms during respiratory suspensions in Transcendental Meditation as evidenced by latency, hypoxia and RQ change, Soc. Neurosci. Abstr. 11: 1144 (1985).Google Scholar
  18. Knight, J. A., Robertson, G. and Wu, J. T., The chemical basis and specificity of the nitrosonaphthol reaction, Clin. Chem., 29: 1969 (1983).Google Scholar
  19. Krieger, D. T., Endocrine processes and serotonin, in: “Serotonin in Health and Disease Vol III: The Central Nervous System,” W. B. Essman, ed., Spectrum Publications, Inc., New York (1978).Google Scholar
  20. Lal, H., Laballa, F. and Lane, J., eds., “Endocoids” (Progress in Clinical and Biological Research, v. 192), Alan R. Liss, New York (1985).Google Scholar
  21. Langer, S. Z., Raisman, R., Tahraoui, L., Scatton, B., Niddam, R., Lee, C. R. and Claustre, Y., Substituted tetrahydro-beta-carbolines are possible candidates as endogenous ligand of the 3H-imipramine recognition site, Eur. J. Pharmacol., 98: 153 (1984).CrossRefGoogle Scholar
  22. Lundberg, D. B. A., Mueller, R. A. and Breese, G. R., An evaluation of the mechanism by which serotonergic activation depresses respiration, J. Pharmacol. and Exp. Ther. 212: 397 (1980).Google Scholar
  23. Meyerson, L. R., Ieni, J. R. and Wennogle, L. P., Allosteric interactions between platelet imipramine binding and serotonin transport, J. Neurochem (submitted).Google Scholar
  24. Mills, W. W. and Farrow, J. T., The Transcendental Meditation technique and acute experimental pain, Psychosomatic Medicine 43: 157 (1981).Google Scholar
  25. Mustala, O., Specificity of the nitrosonaphthol reaction in the determination of urinary 5-hydroxyindoleacetic acid, Ann. Med. Exp. et Biologie Fenn., 63, Suppl. 8: 1 (1965).Google Scholar
  26. Orme-Johnson, D. W., Autonomie stability and Transcendental Meditation, Psychosomatic Medicine 35: 341 (1973).Google Scholar
  27. Paul, S. M., Rehavi, M., Skolnick, P., Ballenger, J. C. and Goodwin, F. K., Depressed patients have decreased binding of 3H-imipramine to the platelet serotonin “transporter”, Arch. Gen. Psychiat., 38: 1315 (1981).CrossRefGoogle Scholar
  28. Rehavi, M., Skolnick, P. and Paul, S. M., High-affinity binding sites for tricyclic antidepressants in brain and platelets in: “Brain Receptor Methodologies. Part B. Amino Acids, Peptides, Psychoactive Drugs,” P. J. Marangos et al., eds., Academic Press, Inc., New York (1984).Google Scholar
  29. Rommelspacher, H., Honecker, H., Barbey, M. and Meinke, B., 6-Hydroxy-tetrahydronorharmane (6-hydroxy-tetrahydro-beta-carboline), a new active metabolite of indole-alkylamines in man and rat, Naunyn-Schmiedeberg’s Arch, Pharmacol., 310: 35 (1979a).CrossRefGoogle Scholar
  30. Rommelspacher, H., Strauss, S. and Lindemann, J., Excretion of tetrahydroharmane and harmane into the urine of man and rat after a load with ethanol, EEBS Letters, 109: 209 (1979b).Google Scholar
  31. Sette, M., Briley, M. S. and Langer, S. Z., Complex inhibition of 3H-imipramine binding by serotonin and nontricyclic serotonin uptake blockers, J. Neurochem., 40: 622 (1983).CrossRefGoogle Scholar
  32. Shihabi, Z. K. and Wilson, E. L., Colorimetrie assay of urinary 5-hydroxy-3-indoleacetic acid, Clin. Biochem., 15: 106 (1982).CrossRefGoogle Scholar
  33. Udenfriend, S., Titus, E. and Weissbach, H., The identification of 5-Hydroxy-3-indoleacetic acid in normal urine and a method for its assay, J. Biol. Chem., 216: 499 (1955).Google Scholar
  34. Walton, K. G., Francis, D., Lerom, M. and Tourenne, C., Behaviorally-induced alterations in urinary 5-hydroxyindoles, Trans. of the Amer. Soc. Neurochem., 14: 199 (1983).Google Scholar
  35. Wennogle, L. P. and Meyerson, L. R., Serotonin modulates the dissociation of 3H-imipramine from human platelet recognition sites, Eur. J. Pharmacol. 86: 303 (1983).CrossRefGoogle Scholar
  36. Wennogle, L. P. and Meyerson, L. M., Serotonin uptake inhibitors differentially modulate high affinity imipramine dissociation in human platelets, Life Sciences 36: 1541 (1985).CrossRefGoogle Scholar
  37. Yuwiler, A., Stress and serotonin, in: “Serotonin in Health and Disease Vol. V: Clinical Applications,” W. B. Essman, ed., SP Med and Scientific Books, New York (1979).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • K. G. Walton
    • 1
  • T. McCorkle
    • 1
  • T. Hauser
    • 1
  • C. MacLean
    • 1
  • R. K. Wallace
    • 1
  • J. Ieni
    • 2
  • L. R. Meyerson
    • 2
  1. 1.Neurochemistry LaboratoryMaharishi International UniversityFairfieldUSA
  2. 2.Department of Chemical PharmacologyMedical Research Division of American Cyanamid Company, Ramapo CollegeMahwahUSA

Personalised recommendations