The Serotonin-Norepinephrine Link Hypothesis of Affective Disorders: Receptor-Receptor Interactions in Brain

  • Fridolin Sulser
  • Elaine Sanders-Bush
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


The morphological organization of central monoamine systems has suggested a functional linkage of noradrenergic and serotonergic neurons ever since Dahlstrom and Fuxe (1964) demonstrated, by means of a sensitive fluorescence method, the neuronal localization of norepinephrine (NE) and serotonin (5HT) and mapped NE and 5HT containing cell bodies and terminals in the central nervous system. These and more recent studies show that NE and 5HT neurons form monosynaptic pathways between the lower brain stem and the cerebral cortex (Dahlstrom and Fuxe, 1964; Anden et al., 1966; Moore and Bloom, 1979; Levitt and Moore, 1978; Morrison et al., 1982; Consolazione and Cuello, 1982). With the introduction of immunohistochemical techniques, it became evident that NE and 5HT containing neurons project to the entire neuraxis and, within the cerebral cortex, to all six cortical layers, though some topographical and species differences exist (Lindvall and Bjorklund, 1984; Levitt et al., 1984). Early work also indicated a high degree of catecholamine innervation of 5HT cell bodies in the raphe nuclei (Dahlstrom and Fuxe, 1964) and the existence of a 5HT innervation of NE cell bodies in the locus coeruleus (Pickel et al., 1975). The details of the monoaminergic pathways in the central nervous system have been authoritatively reviewed (Jacobowitz, 1978; Moore and Bloom, 1979; Consolazione and Cuello, 1982). As pointed out by Fuxe et al. (1978), there is little doubt that the 5HT and NE neurons are linked together neuroanatomically and that they influence one another at various points on the neural axis.


Adenylate Cyclase Choroid Plexus Serotonergic Neuron Adenylate Cyclase System Phosphoinositide Hydrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Affolter, H., Erne, P., Burgisser, E. and Pletscher, A., Ca++ as a messenger of 5HT receptor stimulation in human blood platelets, Naunyn-Schmiede-berg’s 2 Arch. Pharmacol, 325: 337–342 (1984).CrossRefGoogle Scholar
  2. Anden, N. E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L. and Ungerstedt, U., Ascending monoamine neurons to the telencephanon and diencephalon, Acta physiol. Scand. 67: 313–326 (1966).CrossRefGoogle Scholar
  3. Barbaccia, M. L., Brunello, N., Chuang, D. M. and Costa, E., On the mode of action of imipramine: Relationship between serotonergic axon terminal function and down-regulation of beta adrenergic receptors, Neuropharmacology 22: 373–383 (1983).CrossRefGoogle Scholar
  4. Berridge, M. J., Rapid accumulation of inositol triphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol, Biochem. J. 212: 849–858 (1983).Google Scholar
  5. Berridge, M. J., Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J., 220: 345–360 (1984).Google Scholar
  6. Berridge, M. J., Dawson, C., Downes, C. P., Heslop, J. P. and Irvine, R. K., Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides, Biochem. J. 212: 473–482 (1983).Google Scholar
  7. Berridge, M. J., Downes, P. C. and Hanely, M. R., Lithium amplifies agonistdependent phosphatidylinositol responses in brain and salivary glands, Biochem. J. 206: 587–595 (1982).Google Scholar
  8. Brunello, N., Chuang, D. M., Costa, E., Use of specific brain lesions to study the site of action of antidepressants, Adv. Biosc. 40: 141–145 (1982).Google Scholar
  9. Brunello, N., Volterra, A., Cagiano, R., Ianieri, G. C., Cuomo, V. and Racagni, G., Biochemical and behavioral changes in rats after prolonged treatment with desipramine: Interaction with p-chlorophenylalanine, Naunyn-Schmiedeberg’s Arch. Pharmacol. 331: 20–22 (1985).CrossRefGoogle Scholar
  10. Conn, P. J. and Sanders-Bush, E., Selective 5HT2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex, Neuropharmacology 23: 993–996 (1984).CrossRefGoogle Scholar
  11. Conn, P. J. and Sanders-Bush, E., Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions, J. Pharmacol. Exp. Ther. 234: 195–203 (1985).Google Scholar
  12. Conn, P. J. and Sanders-Bush, E., Regulation of serotonin stimulated phosphoinositide hydrolysis: Relation to the serotonin 5HT2 binding site, J. Neurosci. (submitted) (1986a).Google Scholar
  13. Conn, P. J. and Sanders-Bush, E., Agonist induced phosphoinositide hydrolysis in rat choroid plexus, J. Neurochem. (submitted) (1986b).Google Scholar
  14. Conn, P. J., Sanders-Bush, E., Hoffman, B. J. and Hartig, P. R., A unique serotonin receptor in choroid plexus is linked to phosphoinositide hydrolysis, Proc. Natl. Acad. Sci., in press (1986).Google Scholar
  15. Consolazione, A. and Cuello, A. C., CNS serotonin pathways, In: Biology of serotonergic transmission, N. N. Osborne, ed., pp. 29–61, John Wiley and Sons, Ltd., Baffius Lane, England (1982).Google Scholar
  16. Coppen, A. and Wood, K., 5-Hydroxytryptamine in the pathogenesis of affective disorders, Adv. Biochem. Psychopharmacol. 34: 249–258 (1982).Google Scholar
  17. Crook, R. B., Farber, M. B. and Prusiner, S. B., Hormone and neurotransmitters control cyclic AMP metabolism in choroid plexus epithelial cells, J. Neurochem. 42: 340–350 (1984).CrossRefGoogle Scholar
  18. Dahlstrom, A. and Fuxe, K., Evidence for the existence of monoamine-containing neurons in the central nervous system I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta. Physiol. Scand. 62 (Suppl. 232): 1–55 (1964).Google Scholar
  19. de Chaffoy de Courcelles, D., Roevens, P. and Van Belle, H., Stimulation by serotonin of 40 KDa and 20 KDa protein phosphorylation in human platelets, FEBS Lett. 171: 289–292 (1984).CrossRefGoogle Scholar
  20. de Chaffoy de Courcelles, D., Leysen, J. E., de Clerck, F., Van Belle, H. and Janssen, P. A. J., Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites, J. Biol. Chem. 260: 7603–7608 (1985).Google Scholar
  21. Dumbrille-Ross, A. and Tang, S. W., Noradrenergic and serotonergic input necessary for imipramine induced changes in beta but not S2 receptor densities, Psychiatry Res. 9: 207–215 (1983).CrossRefGoogle Scholar
  22. Fuxe, K., Hokfelt, T., Agnati, L. F., Johansson, O., Goldstein, M., Perez de la Mora, M., Possami, L., Tapia, R., Teran, L. and Palacios, R., Mapping out central catecholamine neurons: Immunohistochemical studies on catecholamine-synthesizing enzymes. In: Psychopharmacology: A generation of progress, M. A. Lipton, A. DiMascio, K. K. Killam, eds. pp. 67–94, Raven Press, NY, NY (1978).Google Scholar
  23. Gilbert, R. F. T., Bennett, G. W., Marsden, C. A. and Emson, P. C., The effects of 5-hydroxytryptamine depleting drugs on peptides in the ventral spinal cord, Europ. J. Pharmacol. 76: 203–210 (1981).CrossRefGoogle Scholar
  24. Harden, T. K., Agonist-induced desensitization of the beta adrenergic receptor-linked adenylate cyclase. Pharmacol. Rev. 35: 5–32 (1983).Google Scholar
  25. Hegstrand, L. R., Minneman, K. P. and Molinoff, P. B., Multiple effects of guanosine triphosphate on beta adrenergic receptors and adenylate cyclase activity in rat heart, lung and brain, J. Pharmacol. Exp. Ther. 210: 215–221 (1979).Google Scholar
  26. Hirasawa, K. and Nishizuka, Y., Phosphatidylinositol turnover in receptor mechanisms and signal transduction, Ann. Rev. Pharmacol. Toxicol. 25: 147–170 (1985).CrossRefGoogle Scholar
  27. Hirata, F. and Axelrod, J., Phospholipid methylation and the transmission of biological signals through membranes, Science 209: 1082–1090 (1980).CrossRefGoogle Scholar
  28. Jacobowitz, D. M., Monoaminergic pathways in the central nervous system, In: Psychopharmacology: A generation of progress, M. A. Lipton, A. DiMascio, K. K. Killam, eds., pp. 119–129, Raven Press, New York, NY (1978).Google Scholar
  29. Janowsky, A., Okada, F., Manier, D., Applegate, C. D. and Sulser, F., Role of serotonergic input in the regulation of the beta-adrenergic receptorcoupled adenylate cyclase system, Science 218: 900–901 (1982).CrossRefGoogle Scholar
  30. Kendall, D. A. and Nahorski, S. R., 5-hydroxytryptamme stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacological characterization and effects of antidepressants, J. Pharmaco. Exper. Therap. 233: 473–479 (1985).Google Scholar
  31. Levitt, P. and Moore, R. Y., Noradrenaline neuron innervation of the neurocortex in the rat, Brain Res. 139: 219–232 (1978).CrossRefGoogle Scholar
  32. Levitt, P., Rakic, P. and Goldman-Rakic, P. S., Comparative assessment of monoamine afferents in mammalian cerebral cortex, Neurology and Neurobiology 10: 41–59 (1984).Google Scholar
  33. Lindvall, O. and Bjorkluna, A., General organization of cortical monoamine systems, Neurology and Neurobiology 10: 9–40 (1984).Google Scholar
  34. Maeda, K., Monoaminergic effect on cerebrospinal fluid production, Nihon Univ. J. Med. 25: 155–174 (1983).Google Scholar
  35. Manier, D. H., Gillespie, D. D., Steranka, L. R. and Sulser, F., A pivotal role for serotonin in the down-regulation of beta-adrenoceptors by antidepressants: Reversibility of the action of p-chlorophenylaianine (PCPA) by 5-hydroxytryptophan, Experientia 40: 1223–1226 (1984).CrossRefGoogle Scholar
  36. Manier, D. H., Gillespie, D. D., Sanders-Bush, E. and Sulser, F., The serotonin/noradrenaline-link in brain: I. The role of noradrenaline and serotonin in tne regulation of density and function of beta adrenoceptors and its alteration by DMI, Naunyn-Schmiedeberg’s Arch. Pharmacol. submitted (1986).Google Scholar
  37. Mendlewicz, J. and Youdim, M. B. H., Antideprebsant potentiation of 5-hy-droxytryptophan by 1-deprenyl in affective illness, J. Affect. Disord. 2: 137–146 (1980).CrossRefGoogle Scholar
  38. Mobley, P. L., Manier, D. H. and Sulser, F., Norepinephrine-sensitive adenylate cyclase system in rat brain: Role of adrenal corticosteroids, J. Pharmacol. Exp. Ther. 226: 71–77 (1983).Google Scholar
  39. Moore, R. Y., Bloom, F. E., Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems, Ann. Rev. Neurosci. 2: 113–168 (1979).CrossRefGoogle Scholar
  40. Morrison, J. H., Foote, S. L., Molliver M. E., Bloom, F. E. and Lidov, H. G. W., Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: An immunohistochemical study, Proc. Natl. Acad. Sci. USA 79: 2401–2405 (1982).CrossRefGoogle Scholar
  41. Nathanson, J., Beta-adrenergic sensitive adenylate cyclase in secretory cells of choroid plexus, Science 204: 843–844 (1979).CrossRefGoogle Scholar
  42. Nestler, E. J. and Greengard, P., Protein phosphorylation in brain. Nature 305: 583–588 (1983).CrossRefGoogle Scholar
  43. Nestler, E. J., Walaas, S. T. and Greengard, P., Neuronal phosproteins: Physiological and clinicax implications, Science 225: 1557–1364 (1984).CrossRefGoogle Scholar
  44. Nimgaonkar, V. L., Goodwin, G. M., Davies, C. L. and Green, A. R., Downregulation of beta-adrenoceptors in rat cortex by repeated administration of desipramine, electroconvulsive shock and clembuterol requires 5HT neurones but not 5HT, Neuropharmacology 24: 279–285 (1985).CrossRefGoogle Scholar
  45. O’Donnell, J. M. and Frazer, A., Effects of clenbuterol and tricyclic antidepressants on beta-adrenergic receptor/N-protein coupling in rat cerebral cortex, Fed. Proc. 43: 839 (1984).Google Scholar
  46. Okada, F., Tokumitsu, Y. and Ui, M., Desensitization of beta adrenergic receptor coupled adenylate cyclase in cerebral cortex after treatment in vivo of rats with desipramine, J. Neurochem. in press (1986).Google Scholar
  47. Pazos, A., Hoyer, D. and Palacios, J. M., The binding of serotonergic ligand to the porcine choroid plexus: Characterization of a new type of serotonin recognition site, Europ. J. Pharmacol. 106: 539–546 (1984).CrossRefGoogle Scholar
  48. Pickel, V. M., Joh, T. H., Field, P. M., Becker, C. G. and Reis, D. J., Cellular localization of tyrosine hydroxylase by immunohistochemistry, J. Histochem. Cytochem. 23: 1–12 (1975).CrossRefGoogle Scholar
  49. Roth, B. L., Nakaki, T., Chuang, D. M., Chemow, B. and Costa, E., Characterization of 5HT2 receptors linked to phospholipase C in rat aorta, Fed. Proc. 44: 1244 (1985).Google Scholar
  50. Roth, B. L., Nakaki, T., Chuang, D. M. and Costa, E., Aortic recognition sites for serotonin (5HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover, Neuropharmacology 23: 1223–1225, (1984).CrossRefGoogle Scholar
  51. Shopsin, B., Friedman, E. and Gershon, S., The use of synthesis inhibitors in defining a role for biogenic amines during imipramine treatment in depressed patients, Psychopharmacol. Comm. 1: 239–249 (1975).Google Scholar
  52. Shopsin, B., Friedman, E. and Gershon, S., Parachlorophenylalanine reversal of tranylcypromine effects in depressed patients, Arch. Gen. Psych. 33: 811–819 (1976).CrossRefGoogle Scholar
  53. Stockmeier, C. A., Martino, A. M. and Kellar, K. J., A strong influence of serotonin axons on beta-adrenergic receptors in rat brain, Science 230: 323–325 (1985).CrossRefGoogle Scholar
  54. Sulser, F., Noraderenergic receptor regulation and the action of antidepressants. In “Depression and Antidepressants — Recent Events, pp. 24–36, excerpta Medica, Amsterdam (1983).Google Scholar
  55. Sulser, F., The serotonin-noradrenaline link-hypothesis of affective disorders, in: Psychiatry, vol. 2, Eds. P. Pichot, P. Berner, R. Wolf and K. Thau, Plenum Publishing Corporation, pp. 411–416 (1985).Google Scholar
  56. Sulser, F., Conn, P. J., Zawad, J. S. and Sanders-Bush, E., Molecular aspects of altered transmembrane regulation of the noradrenaline signal by antidepressants, Benzon Symposium on Drug Action, Copenhagen, in press (1986).Google Scholar
  57. Van Praag, H. M., Serotonin precursors in the treatment of depression, Adv. Biochem. Psychopharmacol. 34: 259–286 (1982).Google Scholar
  58. Whybrow, P. and Mendels, J., Toward a biology of depression: Some suggestions from neurophysiology, Amer. J. Psychiatry 125: 45–54 (1969).Google Scholar
  59. Yagaloff, K. A. and Hartig, P. R., [125T]-LSD binds to a novel serotonergic site on rat choroid plexus epithelial cells, J. Neurosci. 5: 3178–3183 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Fridolin Sulser
    • 1
  • Elaine Sanders-Bush
    • 1
  1. 1.Departments of Pharmacology and PsychiatryVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations