Interactions of the Alkyl-Ether-Phospholipid, Platelet Activating Factor (PAF) with Platelets, Neural Cells, and the Psychotropic Drugs Triazolobenzodiazepines

  • E. Kornecki
  • R. H. Lenox
  • D. H. Hardwick
  • J. A. Bergdahl
  • Y. H. Ehrlich
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


PAF-acether, a naturally occurring phospholipid, is a potent activator of various biological processes, including platelet aggregation. The mechanisms of action of PAF are largely unknown. We have found that the psychotropic triazolobenzodiazepine drugs, alprazolam and triazolam, potently (IC50 < lμM) inhibit PAF-induced shape change, aggregation and secretion of human platelets. These effects are specific for PAF-activation, since the responses of human platelets to other agonists (ADP, thrombin, epinephrine, collagen, arachidonate and the Ca++ ionophore, A23187) are not inhibited by these triazolobenzodiazepines. The action of triazolobenzodiazepines on PAF-induced platelet function has clinical relevance, especially in diseases where enhanced platelet aggregability may lead to thrombosis and atherosclerosis. In addition, the ability of triazolobenzodiazepines to inhibit other PAF-mediated cellular-responses, such as anaphylactic shock or bronchoconstriction, suggests that these drugs may be useful in preventing several known pathophysiological effects of PAF.

The specific antagonism of PAF action by psychotropic drugs also suggests that PAF or PAF-like phospholipids may play a role in neuronal function. This possibility was tested by examining the effects of PAF on neural cells of the clonal line NG108-15, grown in culture in a chemically defined, serum-free medium. Low concentrations of PAF (0.5–2.5μM) induced neurite extension in NG108-15 cells, whereas higher concentrations (>3μM) were cytotoxic. Using NG108-15 cells preloaded with aequorin, it was found that PAF causes an increase in intracellular ionized calcium concentration, which is dependent on the presence of extracellular calcium. These results suggest that PAF-induced Ca++ uptake may play a role in neuronal development, and that circulating PAF may contribute to the neuronal degeneration caused by the exposure of neural tissues to blood in situations such as spinal cord injury, trauma, or stroke.


Platelet Activate Factor Human Platelet Triazole Ring Glyceryl Ether Zellweger Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam, I., Smith, J. B. and Silver, M. J., Human and rabbit platelets form platelet-activating factor in response to calcium ionophore, Thromb. Res. 30: 71–79 (1983).CrossRefGoogle Scholar
  2. Albert, D. H. and Snyder, F., Biosynthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) from l-alkyl-2-acyl-snglycero-3-phosphocholine by rat alveolar macrophages, J. Biol. Chem. 258: 97–102 (1983).Google Scholar
  3. Alonso, F., Gil, M. G., Sanchez-Crespo, M. and Mato, J. M., Activation of 1-0-alkyl-2-lyso-glycero-3-phosphocholine acetyl-CoA transferase during phagocytosis in human polymorphonuclear leukocytes, J. Biol. Chem. 257: 3376–3378 (1982).Google Scholar
  4. Arnoux, B., Darval, D. and Benveniste, J., Release of platelet-activating factor (PAF-acether) from alveolar macrophages by the calcium ionophore A23187 and phagocytosis, Eur. J. Clin. Invest. 10: 437–441 (1980).CrossRefGoogle Scholar
  5. Benveniste, J., Chignard, M., Le Couedic, J. P. and Vargaftig, B. B., Biosynthesis of platelet-activating factor (PAF-acether). II. Involvement of phospholipase A2 in the formation of PAF-acether and lyso-PAF-acether from rabbit platelets, Throm. Res. 25: 375–385 (1982).CrossRefGoogle Scholar
  6. Benveniste, J., Tence, M., Varenne, P., Bidault, J., Boullet, C. and Polonsky, J., Semi-synthese et structure proposee du facteur activant les plaquettes (PAF): PAF-acether, un alkyl ether analogue de la lysophosphatidyl-choline, C. R. Acad. Sci. (D), 289: 1037–1040 (1979).Google Scholar
  7. Benveniste, J., LeCouedic, J. P. and Kamoun, P., Aggregation of human platelets by platelet-activating factor, Lancet 1: 344–345 (1975).CrossRefGoogle Scholar
  8. Benavides, J., Quarteronet, D., Plouin, P.-F., Imbault, F., Phan, T., Uzan, A., Renault, C., Dubroeuco, M.-C., Gueremy, C. and LeFur, G., Characterization of peripheral type benzodiazepine binding sites in human and rat platelets by using [3H]PK 11195. Studies in hypertensive patients, Biochem. Pharm. 33: 2467–2472 (1984).CrossRefGoogle Scholar
  9. Betz, S. J. and Henson, P. M., Production and release of platelet-activating factor (PAF): dissociation from degranulation and superoxide production in the human neutrophil, J. Immunol. 125: 2756–2763 (1980).Google Scholar
  10. Blank, M. L., Lee, T-C., Fitzgerald, V. and Snyder, F., A specific acetylhydrolase for l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid), J. Biol. Chem. 256: 175–178 (1981).Google Scholar
  11. Blank, M. L., Snyder, F. Byers, L. W., Brooks, B. and Muirhead, E. E., Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. Biophys. Res. Commun. 90: 1194–1200 (1979).CrossRefGoogle Scholar
  12. Camussi, G. Aglietta, M., Malavasi, F., Bussolino, F., Piacibello, W., Sanavio, F. and Tetta, C., Release of platelet-activating factor from human endothelial cells. In: Benveniste, J. and Arnoux, B., eds. Platelet activating factor. Amsterdam: Elsevier, 1983: 83–90 (INSERM symposium No. 23) (1983).Google Scholar
  13. Camussi, G., Mencia-Huerta, J. M. and Benveniste, J., Release of plateletactivating factor and histamine. I. Effect of immune complexes, complement, and neutrophils on human and rabbit mastocytes and basophils, Immunology 33: 523–534 (1977).Google Scholar
  14. Chap, H., Mauco, G., Simon, M., Benveniste, J. and Douste-Blazy, L., Biosynthetic labelling of platelet activating factor from radioactive acetate by stimulated platelets, Nature 289: 312–314 (1981).CrossRefGoogle Scholar
  15. Chesny, C. M., Pifer, D. D., Byers, L. W. and Muirhead, E. E., Effect of platelet-activating factor (PAF) on human platelets, Blood 59: 583–585 (1982).Google Scholar
  16. Chignard, M., LeCouedic, J. P., Tence, M., Vargaftig, B. B. and Benveniste, J., The role of platelet-activating factor in platelet aggregation, Nature (London) 279: 799–800 (1979).CrossRefGoogle Scholar
  17. Chilton, F. H., Ellis, J. M., Olson, S. C. and Wykle, R. L., 1-0-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. A common source of plateletactivating factor and arachidonate in human polymorphonuclear leukocytes, J. Biol. Chem. 259: 12014–12019 (1984).Google Scholar
  18. Chilton, F. H., O’Flaherty, J. T., Ellis, J. M., Swendsen, C. L. and Wykle, R. L., Metabolic fate of platelet-activating factor in neutrophils, J. Biol. Chem. 258: 6357–6361 (1983).Google Scholar
  19. Chouinard, G. Annable, L., Fontaine, R. and Solyom, L., Alprazolam in the treatment of generalized anxiety and panic disorders: a double-blind placebo-controlled study, Psychopharmacol. 77: 229–233 (1982).CrossRefGoogle Scholar
  20. Clark, P. O., Hanahan, D. J. and Pinckard, R. N., Physical and chemical properties of platelet-activating factor obtained from human neutrophils and monocytes and rabbit neutrophils and basophils, Biochem. Biophys. Acta 628: 69–75 (1980).CrossRefGoogle Scholar
  21. Cohn, J. B., Multicenter double-blind efficacy and safety study comparing alprazolam, diazepam and placebo in clinically anxious patients, J. Clin. Psychiatry 42: 347–351 (1981).Google Scholar
  22. Datta, N. S., Wilson, G. N. and Hajra, A. K., Deficiency of enzymes catalyzing the biosynthesis of glycerol-ether lipids in Zellweger syndrome, New Eng. J. Med. 311: 1080–1083 (1984).CrossRefGoogle Scholar
  23. Darius, H., Lefer, D. J., Smith, J. B. and Lefer, A. M., Role of plateletactivating factor-acether in mediating guinea pig anaphylaxis, Science 232: 58–60 (1986).CrossRefGoogle Scholar
  24. DeLorenzo, R. J., Burdette, S. and Holderness, J., Benzodiazepine inhibition of the calcium-calmodulin protein kinase system in brain membranes, Science 213: 546–549 (1981).CrossRefGoogle Scholar
  25. Demopoulos, C. A., Pinckard, R. N. and Hanahan, D. J., Platelet-activating factor: evidence for 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem. 254: 9355–9358 (1979).Google Scholar
  26. Ehrlich, Y. H., Davis, T. B., Bock, E., Kornecki, E. and Lenox, R. H., Ectoprotein kinase activity on the external surface of neural cells, Nature 320: 67–70 (1986).CrossRefGoogle Scholar
  27. Findlay, S. R., Lichtenstein, L. M., Hanahan, D. J. and Pinckard, R. N., Contraction of guinea pig ileal smooth muscle by acetyl glyceryl ether phosphorylcholine, Amer. J. Physiol. 241: C130–C133 (1981).Google Scholar
  28. Hamprecht, B., Glaser, T., Reiser, G., Bayer, E. and Propst, F., Culture and characteristics of hormone-responsive neuroblastoma X glioma hybrid cells, Methods in Enzymology 109: 316–341 (1985).CrossRefGoogle Scholar
  29. Hathaway, D. R. and Adelstein, R. S., Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity, Proc. Natl. Acad. Sci. USA 76: 1653–1657 (1979).CrossRefGoogle Scholar
  30. Henson, P. M., Activation of rabbit platelets by platelet-activating factor derived from IgE-sensitized basophils, J. Clin. Invest. 60: 481–490 (1977).CrossRefGoogle Scholar
  31. Hoffman, D. R., Hajdu, J. and Snyder, F., Cytotoxicity of platelet activating factor and related alkyl-phospholipid analogs in human leukemia cells, polymorphonuclear neutrophils, and skin fibroblasts, Blood 63: 545–552 (1984).Google Scholar
  32. Ieyasu, H., Takai, Y., Kaibuchi, K., Sawamura, M. and Nishizuka, Y., A role of calcium-activated, phospholipid-dependent protein kinase in platelet-activating factor-induced serotonin release from rabbit platelets, Biochem. Biophys. Res, Commun. 108: 1701–1708 (1982).CrossRefGoogle Scholar
  33. Johnson, P. C., Ware, J. A., Cliveden, P. B., Smith, M., Dvorak, A. M. and Salzman, E. W., Measurement of ionized calcium in blood platelets with the photoprotein aequorin, J. Biol. Chem. 260: 2069–2076 (1985).Google Scholar
  34. Kornecki, E. and Ehrlich, Y. H., Stimulation of calcium uptake in neural cells by the alkyl-ether phospholipid platelet activating factor (PAF), Society for Neuroscience, Vol. 12: 1244 (1986).Google Scholar
  35. Kornecki, E., Lenox, R. H., Hardwick, D. H. and Ehrlich, Y. H., A role for platelet activating factor (PAF) in neuronal function: specific inhibition of platelet activation by triazolobenzodiazepines and interactions of PAF with cultured neural cells. In: New Horizons in Platelet Activating Factor Research, (eds. Lee, M. L. and Winslow, C. M.) John Wiley and Sons Ltd. (1986).Google Scholar
  36. Kornecki, E., Tuszynski, G. P. and Niewiarowski, S., Inhibition of fibrinogen receptor-mediated platelet aggregation by heterologous anti-human platelet membrane antibody, J. Biol. Chem. 258: 9349–9356 (1983).Google Scholar
  37. Kornecki, E., Ehrlich, Y. H. and Lenox, R. H., Platelet-activating factor induced aggregation of human platelets specifically inhibited by triazolobenzodiazepines, Science 226: 1454–1456 (1984).CrossRefGoogle Scholar
  38. Lapetina, E. G., Platelet-activating factor stimulates the phosphatidylinositol cycle, J. Biol. Chem. 247: 7314–7317 (1982).Google Scholar
  39. Lee, M. L. and Winslow, C. M., (Eds.). New Horizons in Platelet Activating Factor Research, John Wiley & Sons, Ltd., (1986).Google Scholar
  40. Lee, T., Lenihan, D. J., Malone, B., Roddy, L. L. and Wasserman, S. I., Increased biosynthesis of platelet activating factor in activated human eosinophils, J. Biol. Chem. 259: 5526–5530 (1984).Google Scholar
  41. Lee, T.-C., Malone, B. and Snyder, F., Stimulation of calcium uptake by 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (Plaatelet-Activating Factor) in rabbit platelets: possible involvement of the lipoxygenase pathway, Archiv. Biochem. Biophys. 223: 33–39 (1983).CrossRefGoogle Scholar
  42. Leonard, J. P. and Salpeter, M. M., Agonist-induced myopathy at the neuromuscular junction is mediated by calcium, J. Cell Biol. 82: 811–819 (1979).CrossRefGoogle Scholar
  43. Lotner, G. Z., Lynch, J. M., Betz, S. J. and Henson, P. M., Human neutrophil-derived platelet activating factor, J. Immunol. 124: 676–684 (1980).Google Scholar
  44. Lynch, J. M., Lotner, G. Z., Betz, S. J. and Henson, P. M., The release of a platelet-activating factor by stimulated rabbit neutrophils, J. Immunol. 123: 1219–1226 (1979).Google Scholar
  45. Marcus, A. J., Safier, L. B., Ullman, H. L., Wong, K. T. H., Broekman, J., Weksler, B. B. and Kaplan, K. L., Effects of acetylglyceryl ether phosphorylcholine on human platelet function in vitro, Blood 58: 1027–1030 (1981).Google Scholar
  46. McManus, L. M., Hanahan, D. J. and Pinckard, R. N., Human platelet activation by acetyl glyceryl ether phosphorylcholine, J. Clin. Invest. 67: 903–906 (1981).CrossRefGoogle Scholar
  47. Mencia-Huerta, J. M. and Benveniste, J., Platelet-activating factor and macrophages. I. Evidence for the release from rat and mouse peritoneal macrophages and not from mastocytes, Eur. J. Immunol. 9: 409–415 (1979).CrossRefGoogle Scholar
  48. Moingeon, Ph., Dessaux, J. J., Fellous, R., Alberici, G. F., Bidart, J. M., Motte, Ph. and Bohuon, C., Benzodiazepine receptors on human blood platelets, Life Sci. 35: 2003–2009 (1984).CrossRefGoogle Scholar
  49. Mueller, H. W., O’Flaherty, J. T. and Wykle, R. L., Biosynthesis of platelet activating factor in rabbit polymorphonuclear-neutrophils, J. Biol. Chem. 258: 6213–6218 (1983).Google Scholar
  50. Ninio, E., Mencia-Huerta, J. M., Heymans, F. and Benveniste, J., Biosynthesis of platelet activating factor. I. Evidence for an acetyltranferase activity in murine macrophages, Biochem. Biophys. Acta. 710: 23–31 (1982).CrossRefGoogle Scholar
  51. Nirenberg, M., Wilson, S., Higashida, H., Rotter, A., Krueger, K., Busis, N., Ray, R., Kenimer, J. G. and Adler, M., Modulation of synapse formation by cyclic adenosine monophosphate, Science 222: 793–799 (1983).CrossRefGoogle Scholar
  52. Nishizuka, Y., Turnover of inositol phospholipids and signal transduction, Science 225: 1365–1370 (1984).CrossRefGoogle Scholar
  53. Pakes, G. E., Brogden, R. N., Heel, R. C. and Speight, T. M., Triazolam: a review of its pharmacological properties and therapeutic efficacy in patients with insomnia, Drugs 22: 81–110 (1981).CrossRefGoogle Scholar
  54. Pinckard, R. N., Farr, R. S. and Hanahan, D. J., Physicochemical and functional identity of rabbit platelet-activating factor (PAF) released in vivo during IgE anaphylaxis with PAF released in vitro from IgE sensitized basophils, J. Immunol. 123: 1847–1857 (1979).Google Scholar
  55. Sheehan, D. V., Coleman, J. H., Greenblatt, D. J., Jones, K. J., Levine, P. H., Orsulak, P. J., Peterson, M., Schnildkraut, J. J., Uzogara, E. and Watkins, D., Some biochemical correlates of panic attacks with agoraphobia and their response to a new treatment, J. Clin. Psychopharmacol. 4: 66–75 (1984).CrossRefGoogle Scholar
  56. Snyder, F., The significance of dual pathways for the biosynthesis of platelet-activating factor alkyl-acetylglycerols and lyso-PAF as immediate precursors. In: New Horizons in Platelet Activating Factor Research (eds. Lee, M. L. and Winslow, C. M.), John Wiley and Sons, Ltd. (1986).Google Scholar
  57. Valone, F. H. and Johnson, B., Modulation of cytoplasmic calcium in human platelets by the phospholipid platelet-activating factor 1-0-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine, J. Immunol. 134: 1120–1124 (1985).Google Scholar
  58. Vargaftig, B. B., Chignard, M., Benveniste, J., Lefort, J. and Wal, F., Background and present status of research on platelet-activating factor (PAF-acether), Ann. NY Acad. Sci. 370: 119–137 (1981).CrossRefGoogle Scholar
  59. Wang, J. K. T., Taniguchi, T. and Spector, S., Properties of [3H]diazepam binding sites on rat blood platelets, Life Sci. 27: 1881–1888 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • E. Kornecki
    • 1
  • R. H. Lenox
    • 1
  • D. H. Hardwick
    • 1
  • J. A. Bergdahl
    • 1
  • Y. H. Ehrlich
    • 1
  1. 1.The Neuroscience Research Unit, Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations