A Physiological Role of the Benzodiazepine/GABA Receptor-Chloride Ionophore Complex in Stress

  • Hratchia Havoundjian
  • Ramon Trullas
  • Steven Paul
  • Phil Skolnick
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


Both direct and correlative evidence suggests that the principal pharmacologic actions of the benzodiazepines are mediated by high affinity, stereospecific recognition sites (receptors) found exclusively in tissue derived from the neural crest. The rapid advances in our understanding of the relationship of benzodiazepine receptors to (a subpopulation of) γ-aminobutyric acid (GABA, the principal inhibitory neurotransmitter in mammalian brain) receptors and an associated chloride channel have resulted in new insights about the molecular pharmacology of the benzodiazepines and other psychoactive drugs which share pharmacologic actions with the benzodiazepines (e.g. barbiturates, ethanol). In contrast, the physiological roles of this “benzodiazepine receptor complex” are not well understood, and the physiological relevance of benzodiazepine receptors has been questioned (cf. Guidotti, et al., 1983). This chapter will briefly summarize the evidence implicating the benzodiazepine receptor complex in the response to stress and anxiety, and present some recent findings from our laboratory which supports this hypothesis.


Gaba Receptor Visual Evoke Potential Inverse Agonist Apparent Affinity Colony Room 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bansky, G., Meier, P., Ziegler, W., Walser, H., Schmid, M. and Huber, M., Reversal of hepatic coma by benzodiazepine antagonist (Ro 15-1788), Lancet June 8, 1985, 1324–1325.Google Scholar
  2. Bassett, M., Mullen, K., Skolnick, P. and Jones, E., Amelioration of hepatic encephalopathy by pharmacological antagonism of the GABA-benzodiazepine receptor complex in a rabbit model of fulminant hepatic failure, Hepatology, submitted (1986).Google Scholar
  3. Biggio, G., The action of stress, B-carbolines, diazepam, and Ro 15-1788 on GABA receptors in the rat brain. In: Benzodiazepine recognition site ligands: Biochemistry and Pharmacology. G. Biggio and E. Costa (eds.), Raven Press, New York, p. 105–119 (1983).Google Scholar
  4. Biggio, G., Corda, M., Concas, A., Demontis, G., Rosetti, Z. and Gessa, G., Rapid changes in GABA binding induced by stress in different areas of rat brain, Brain Res. 229: 363–369 (1981).CrossRefGoogle Scholar
  5. Braestrup, C., Nielsen, M., Nielsen, E. and Lyon, M., Benzodiazepine receptors in brain as affected by different experimental stresses: the changes are small and not unidirectional, Psychopharmacol. 65: 273–277 (1979).CrossRefGoogle Scholar
  6. Buchsbaum, M., Davis, C. and Bunney, W., Naloxone alters pain perception and somatosensory evoked potentials in human subjects, Nature 270: 620–622 (1977).CrossRefGoogle Scholar
  7. Chan, C. and Earb, D., Modulation of neurotransmitter action: control of the γ-aminobutyric acid response through the benzodiazepine receptor, J. Neurosci. 5: 2365–2372 (1985).Google Scholar
  8. Concas, A., Corda, M. and Biggio, G., Involvement of benzodiazepine recognition sites in the footshock-induced decrease of low affinity GABA receptors in the rat cerebral cortex, Brain Res. 341: 50–56 (1985).CrossRefGoogle Scholar
  9. Cook, D., Kendall, J., Greer, M. and Kramer, R., The effect of acute or chronic ether stress on plasma ACTH concentration in the rat, Endocrin. 93: 1019–1024 (1977).CrossRefGoogle Scholar
  10. Corda, M., Blaker, W., Mendelson, W., Guidotti, A. and Costa, E., B-Carbo-lines enhance shock-induced suppression of drinking in the rat, Proc. Natl. Acad. Sci. USA 80: 2072–2078 (1983).CrossRefGoogle Scholar
  11. Corda, M., Eerrari, M., Guidotti, A., Kondel, D. and Costa, E., Isolation, purification and partial sequence of a neuropeptide (diazepam-binding inhibitor) precursor of an anxiogenic putative ligand for benzodiazepine recognition site, Neurosci. Lett. 47: 319–325 (1984).CrossRefGoogle Scholar
  12. Costa, T., Rodbard, D. and Pert, C., Is the benzodiazepine receptor coupled to a chloride ion channel?, Nature 277: 315–317 (1979).CrossRefGoogle Scholar
  13. Crawley, J., Marangos, P., Paul, S., Skolnick, P. and Goodwin, F., Purinebenzodiazepine interaction: Inosine reverses diazepam-induced stimulation of mouse exploratory behavior, Science 211: 725–727 (1981).CrossRefGoogle Scholar
  14. Dantzer, R. and Perio, A., Behavioral evidence for partial agonist properties of Ro 15-1788, a benzodiazepine receptor antagonist, Eur. J. Pharmacol. 81: 655–658 (1982).CrossRefGoogle Scholar
  15. deCarvalho, L., Grecksch, G., Chapouthier, G. and Rossier, J., Anxiogenic and non-anxiogenic benzodiazepine antagonists, Nature 301: 64–66 (1983).CrossRefGoogle Scholar
  16. Dorow, R., Horowski, R., Paschelke, G, Amin, M. and Braestrup, C., Severe anxiety induced by FG 7142, a B-carboline ligand for benzodiazepine receptors, Lancet 9: 98–99 (1983).CrossRefGoogle Scholar
  17. Ferrero, P., Guidotti, A., Conti-Tronconi, B. and Costa, E., A brain octadecaneuropeptide generated by tryptic digestion of DBI (diazepam binding inhibitor) functions as a proconflict ligand of benzodiazepine recognition sites, Neuropharmacol. 23: 1359–1362 (1984).CrossRefGoogle Scholar
  18. Ferrero, P., Santi, M., Conti-Tronconi, B., Costa, E. and Guidotti, A., A study of an octadecaneuropeptide derived from diazepam binding inhibitor (DBI): biological activity and presence in rat brain, Proc. Natl. Acad. Sci. USA 83: 827–831 (1986).CrossRefGoogle Scholar
  19. File, S., Animal anxiety and the effects of benzodiazepines. In: Pharmacology of benzodiazepines. Usdin, E., Skolnick, P., Tallman, J., Greenblatt, D. and Paul, S. (eds.), MacMillan Press, Ltd., London, pp. 355–363 (1982).Google Scholar
  20. File, S., Lister, R. and Nutt, D., The anxiogenic action of benzodiazepine antagonists, Neuropharmacol. 21: 1033–1037 (1982).CrossRefGoogle Scholar
  21. File, S. and Lister, R., Interactions of ethyl-B-carboline-3-carboxylate and Ro 15-1788 with CGS 8216 in an animal model of anxiety, Neurosci. Letts. 39: 91–94 (1983).CrossRefGoogle Scholar
  22. File, S. and Pellow, S., The effects of putative anxiogenic compounds, FG 7142, CGS 8216, and Ro 15-1788 on the rat corticosterone response, Physiol. and Behav. 35: 587–590 (1985).CrossRefGoogle Scholar
  23. Gallager, D., Lakoski, J., Gonsalves, S. and Rauch, S., Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity, Nature 308: 74–76 (1984).CrossRefGoogle Scholar
  24. Gavish, M. and Snyder, S., Gamma-aminobutyric acid and benzodiazepine receptors: copurification and characterization, Proc. Natl. Acad. Sci. USA 78: 1939–1942 (1981).CrossRefGoogle Scholar
  25. Grecksch, G., deCarvalho, L., Venault, P., Chapouthier, G. and Rossier, J., Convulsions induced by submaximal dose of pentylenetetrazols in mice are antagonized by the benzodiazepine antagonist Ro 15-1788, Life Sci. 32: 2579–2584 (1983).CrossRefGoogle Scholar
  26. Grimm, V. and Hershkowitz, M., The effect of chronic diazepam treatment on discrimination performance and [3H]flunitrazepam binding in the brains of shocked and nonshocked rats, Psychopharmacol. 74: 132–136 (1981).CrossRefGoogle Scholar
  27. Guidotti, A., Corda, M. and Costa, E., Strategies for the isolation and characterization of an endogenous effector of the benzodiazepine recognition sites. In: Benzodiazepine recognition site ligands: biochemistry and pharmacology. G. Biggio and E. Costa (eds.), Raven Press, New York, pp. 95–103 (1983a).Google Scholar
  28. Guidotti, A., Forchetti, C., Corda, M., Kondel, D., Bennett, C. and Costa, E., Isolation, characterization and purification of homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors, Proc. Natl. Acad. Sci. USA 80: 3531–3535 (1983b).CrossRefGoogle Scholar
  29. Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W. and Bloom, F., B-Endorphin and adrenocorticotropin are secreted concommitantly by the pituitary gland, Science 197: 1367–1369 (1977).CrossRefGoogle Scholar
  30. Haefely, W., Antagonists of benzodiazepines: functional aspects. In: Benzodiazepine recognition site ligands: biochemistry and pharmacology. G. Biggio and E. Costa (eds.), Raven Press, New York, pp. 73–93 (1983).Google Scholar
  31. Havoundjian, H., Paul, S. and Skolnick, P., Rapid, stress induced modification of the benzodiazepine receptor coupled chloride ionophore, Brain Res., in press (1986a).Google Scholar
  32. Havoundjian, H., Paul, S. and Skolnick, P., Acute, stress-induced changes in the benzodiazepine/GABA receptor complex are confined to the chloride ionophore, J. Pharmacol. Exp. Ther., in press (1986b).Google Scholar
  33. Havoundjian, H., Paul, S. and Skolnick, P., The permeability of γ-aminobutyric acid gated chloride channels is described by the binding of a cage convulsant, [35S]t-butylbicyclophosphorothionate, Proc. Natl. Acad. Sci. USA, submitted (1986c).Google Scholar
  34. Havoundjian, H., Cohen, R., Paul, S. and Skolnick, P., Differential sensitivity of “central” and “peripheral” benzodiazepine receptors to phospholipase A2, J. Neurochem. 46: 804–811 (1986d).CrossRefGoogle Scholar
  35. Higgitt, A., Lader, M. and Fonagy, P., The effects of the benzodiazepine antagonist, Ro 15-1788 on psychophysiological, performance and subjective measures in normal subjects, Psychopharmacol., in press (1986).Google Scholar
  36. Hunkeler, W., Monier, H., Pieri, L., Pole, P., Bonetti, E., Cumin, R., Schaffner, R. and Haefely, W., Selective antagonists of benzodiazepines, Nature 290: 514–516 (1981).CrossRefGoogle Scholar
  37. Ikeda, M. and Nagatsu, T., Effect of short term swimming stress and diazepam on 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA) levels in the caudate nucleus: an in vivo voltammetric study, Naunyn-Schmiedeberg’s Arch. Pharmacol. 331: 23–26 (1985).CrossRefGoogle Scholar
  38. Ikonomidou, C., Turski, L., Klockgether, T., Schwarz, M. and Sontag, K., Effects of methyl-B-carboline-3-carboxylate, Ro 15-1788, and CGS 8216 on muscle tone in genetically spastic rats, Eur. J. Pharmacol. 113: 205–213 (1985).CrossRefGoogle Scholar
  39. Insel, T., Ninan, P., Aloi, J., Jimerson, D., Skolnick, P. and Paul, S., A benzodiazepine receptor-mediated model of anxiety. Studies in non-human primates and clinical implications, Arch. Gen. Psychiatry 41: 741–750 (1984).CrossRefGoogle Scholar
  40. Kajima, M., LaSalle, G. and Rossier, J., The partial benzodiazepine agonist properties of Ro 15-1788 in pentylenetetrazole-induced seizures in cats, Eur. J. Pharmacol. 93: 113–115 (1985).CrossRefGoogle Scholar
  41. Karobath, M. Supavilai, P. and Borea, P., Distinction of benzodiazepine receptor agonists and inverse agonists by binding studies in vitro. In: Benzodiazepine recognition site ligands: biochemistry and pharmacology. G. Biggio and E. Costa (eds.), Raven Press, New York, pp. 37–45 (1983).Google Scholar
  42. Lane, J., Crenshaw, C., Guerin, G., Cherek, D. and Smith, J., Changes in biogenic amine and benzodiazepine receptors correlated with conditioned emotional response and its reversal by diazepam, Eur. J. Pharmacol. 83: 183–190 (1982).CrossRefGoogle Scholar
  43. Levine, J., Gordon, N., Jones, R. and Fields, H., The narcotic antagonist naloxone enhances clinical pain, Nature 272: 826–827 (1978).CrossRefGoogle Scholar
  44. Lippa, A., Klepner, C., Yunger, L., Sano, M., Smith, W. and Beer, B., Relationship between benzodiazepine receptors and experimental anxiety in rats, Pharmacol. Biochem. & Behav. 9: 853–856 (1978).CrossRefGoogle Scholar
  45. MacDonald, J., Barker, J., Paul, S., Marangos, P. and Skolnick, P., Inosine may be an endogenous ligand for benzodiazepine receptors in cultured spinal neurons, Science 205: 715–717 (1979).CrossRefGoogle Scholar
  46. Marangos, P., Paul, S., Parma, A., Goodwin, F., Syapin, P. and Skolnick, P., Purinergic inhibition of diazepam binding to rat brain in vitro, Life Sci. 24: 851–858 (1979).CrossRefGoogle Scholar
  47. Marangos, P., Martino, A., Paul, S. and Skolnick, P., The benzodiazepines and inosine antagonize caffeine-induced seizures, Psycopharmacol. 72 269–274 (1981).CrossRefGoogle Scholar
  48. Medina, J., Novas, M., Wolfman, C., Levi de Stein, M. and De Robertis, E., Benzodiazepine receptors in rat cerebral cortex and hippocampus undergo rapid and reversible changes after acute stress, Neurosci. 9: 331–335 (1983).CrossRefGoogle Scholar
  49. Mohler, H. and Okada, T., Benzodiazepine receptor: demonstration in the central nervous system, Science 198: 849–851 (1977).CrossRefGoogle Scholar
  50. Nicoli, R. and Wojtowicz, J., The effects of pentobarbital and related compounds on frog motoneurons, Brain Res. 191: 225–237 (1980).CrossRefGoogle Scholar
  51. Nielsen, M., Braestrup, C. and Squires, R., Evidence for a late evolutionary appearance of brain-specific benzodiazepine receptors: an investigation of 18 vertebrate and 5 invertebrate species, Brain Res. 141: 342–346 (1978).CrossRefGoogle Scholar
  52. Ninan, P. Insel, T., Cohen, R., Cook, J., Skolnick, P. and Paul, S., Benzodiazepine receptor-mediated experimental “anxiety” in primates, Science 218: 1332–1334 (1982).CrossRefGoogle Scholar
  53. Pieri, L. and Biry, P., Isoniazid-induced convulsions in rats: effects of Ro 15-1788 and B-CCE, Eur. J. Pharmacol. 112: 355–362 (1985).CrossRefGoogle Scholar
  54. Schoch, P., Harling, P., Takacs, B., Stahli, C. and Mohler, H., A GABA/benzodiazepine receptors complex from bovine brain: purification, reconstitution, and immunological characterization, J. Receptor Res. 4: 189–200 (1984).Google Scholar
  55. Schulz, D. and MacDonald, R., Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: correlation with anticonvulsant and anesthetic actions, Brain Res. 209: 177–188 (1981).CrossRefGoogle Scholar
  56. Schwartz, R., Thomas, J., Kempner, E., Skolnick, P. and Paul, S., Radiation inactivation studies of the benzodiazepine/GABA/chloride ionophore receptor complex, J. Neurochem. 5: 2963–2970 (1985).Google Scholar
  57. Scollo-Lavizzari, G. and Steinmann, E., Reversal of hepatic coma by benzodiazepine antagonist (Ro 15-1788), Lancet, June 8, 1985, 1324.Google Scholar
  58. Sigel, E., Stephenson, F., Mamalaki, C. and Barnard, E., A γ-aminobutyric acid/benzodiazepine receptor complex of bovine cerebral cortex, J. Biol. Chem. 258: 6965–6971 (1983).Google Scholar
  59. Skerritt, J. and MacDonald, R., Benzodiazepine Ro 15-1788: electrophysiological evidence for partial agonist activity, Neurosci. Letts. 43: 321–326 (1983).CrossRefGoogle Scholar
  60. Skolnick, P., Syapin, P., Paugh, B., Marangos, P. and Paul, S., Inosine, an endogenous ligand of the brain benzodiazepine receptor antagonizes PTZ-induced seizures, Proc. Natl. Acad. Sci. USA 76: 1515–1518 (1979).CrossRefGoogle Scholar
  61. Skolnick, P., Marangos, P. and Paul, S., Putative endogenous ligands of the benzodiazepine receptor. In: Anxiolytics. Malick, J., Enna, S., and Yamamura, H. (eds.), Raven Press, New York, pp. 41–53 (1983).Google Scholar
  62. Slater, P. and Longman, D., Effects of diazepam and muscimol on GABA-mediated neurotransmission: interaction with inosine and nicotinamide, Life Sci. 25: 1963–1967 (1979).CrossRefGoogle Scholar
  63. Soubrie, P., Theibot, M., Jobert, A., Montasruc, J., Hery, F. and Hamon, M., Decreased convulsant potency of Picrotoxin and pentylenetetrazole and enhanced [3H]flunitrazepam cortical binding following stressful manipulations in rats, Brain Res. 189: 505–517 (1980).CrossRefGoogle Scholar
  64. Squires, R. and Braestrup, C., Benzodiazepine receptors in rat brain, Nature 266: 732–734 (1977).CrossRefGoogle Scholar
  65. Squires, R., Casida, J., Richardson, M. and Saederup, E., [35S]t-butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to gamma-aminobutyric acid-A and ion recognition sites, Mol. Pharmacol. 23: 326–336 (1983).Google Scholar
  66. Supavilai, P., Mannonen, A., Collins, J. and Karobath, M., Anion dependent modulation of 3H-muscimol binding and of GABA-stimulated 3H-flunitrazepam binding by Picrotoxin and related CNS convulsants, Eur. J. Pharmacol. 81: 687–691 (1982).CrossRefGoogle Scholar
  67. Takeuchi, A. and Takeuchi, N., A study of the actions of Picrotoxin on the inhibitory neuromuscular junction of the crayfish, J. Physiol. 205: 377–391 (1969).Google Scholar
  68. Trullas, R., Havoundjian, H., Paul, S. and Skolnick, P., Environmentally induced modification of benzodiazepine-GABA receptor coupled chloride channel, Psychopharmacol., submitted (1986).Google Scholar
  69. Vogel, J., Beer, B. and Clody, D., A simple and reliable conflict procedure for testing antianxiety agents, Psychopharmacol. 21: 1–7 (1971).CrossRefGoogle Scholar
  70. Witkin, J. and Barrett, J., Benzodiazepine-like effects of inosine on punished behavior of pigeons, Pharmacol. Biochem. & Behav. 24: 121–125 (1986).CrossRefGoogle Scholar
  71. Wong, D., Threlkeld, P., Bymaster, F. and Squires, R., Saturable binding of 35S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with GABAergic agents, Life Sci. 34: 853–860 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Hratchia Havoundjian
    • 1
    • 2
  • Ramon Trullas
    • 1
  • Steven Paul
    • 3
  • Phil Skolnick
    • 1
  1. 1.Laboratory of Bioorganic ChemistryNIADDKUSA
  2. 2.Howard Hughes Medical InstituteUSA
  3. 3.Clinical Neuroscience BranchNIMH, National Institutes of HealthBethesdaUSA

Personalised recommendations