Cytoskeletal Pathology in Neurodegenerative Diseases

  • William W. Pendlebury
  • David Munoz-Garcia
  • Daniel P. Perl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


The neurodegenerative diseases are a large group of disorders of the central nervous system (CNS) which are characterized by cell death in specific populations of neurons. Affected neuronal populations differ in each disease, and causal factors are not well understood. Excluded from this definition are diseases due to known infectious agents, hypoxia, toxins, nutritional deficiencies, and those in which a metabolic defect has been identified. The three most common neurodegenerative diseases are Alzheimer’s disease (presenile and senile forms), Parkinson’s disease, and amyotrophic lateral sclerosis (known to the lay public as Lou Gehrig’s disease). In all three diseases, the cytoplasm of certain neurons accumulate abnormal structures which are derived, at least in part, from cytoskeletal proteins. In addition, neuronal cytoskeletal pathology is seen in several less common neurodegenerative diseases, and the study of these diseases can provide valuable insights into the pathogenesis of the more common disorders. Since the cytoskeleton is critical for the maintenance of neuronal shape (Lazarides, 1980) and cytoplasmic transport mechanisms, including axonal transport (Bray & Gilbert, 1981), neurons exhibiting these abnormalities may not function normally. This review will address recent advances in the understanding of cytoskeletal abnormalities found in degenerative diseases of the CNS, with emphasis on immunocytochemical characterization of the ultrastructural morphology.


Amyotrophic Lateral Sclerosis Progressive Supranuclear Palsy Neurofibrillary Tangle Senile Plaque Paired Helical Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allsop, D., Landon, M. and Kidd, M., The isolation and amino acid composition of senile plaque core protein, Brain Res., 259: 348 (1983).CrossRefGoogle Scholar
  2. Alzheimer, A., Uber eine eigenartige Erkrankung der Hirnrinde, Algemeine Zeitschrift Psychiatric, 64: 146 (1907).Google Scholar
  3. Diagnostic and Statistical Manual of Mental Disorders, ed 3, American Psychiatric Association, Task force on nomenclature and statistics, p. 111 (1980).Google Scholar
  4. Anderson, F. H., Richardson, E. P., Okazaki, H. and Brody, J. A., Neurofibrillary degeneration on Guam: Frequency in chamorros and non chamorros with no known neurological disease, Brain, 102: 65 (1979).CrossRefGoogle Scholar
  5. Anderton, B. H., Breinburg, D., Downes, M. J., Green, P. J., Tomlinson, B. E., Ulrich, J., Wood, J. N. and Kahn, J., Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants, Nature, 298: 84 (1982).CrossRefGoogle Scholar
  6. Autilio-Gambetti, L., Gambetti, P. and Crane R. C., Paired helical filaments: relatedness to neurofilaments shown by silver staining and reactivity with monoclonal antibodies, in: “Biological Aspects of Alzheimer’s Disease. Vol 15 Banbury Report”, R. Katzman, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1983).Google Scholar
  7. Ball, M. J., Neuron loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with aging and dementia. A quantitative study, Acta Neuropathol (Berl), 37: 111 (1977).CrossRefGoogle Scholar
  8. Ball, M. J. and Lo, P., Granulovacuolar degeneration in the aging brain and in dementia, J. Neuropathol Exp Neurol., 36: 474 (1977).CrossRefGoogle Scholar
  9. Blessed, G., Tomlinson, B. E. and Roth, M., The association between quantitative measures of dementia and of senile change in the cerebral gray matter of elderly subjects, Br J Psychiatry, 114: 797 (1968).CrossRefGoogle Scholar
  10. Bray, D. and Gilbert, D., Cytoskeletal elements in neurons, Ann Rev Neurosci., 4: 505 (1981).CrossRefGoogle Scholar
  11. Buigiani, O. and Ghetti, B., Progressing encephalomyelopathy with muscular atrophy, induced by aluminum powder, Neurobiol Aging, 3: 209 (1982).CrossRefGoogle Scholar
  12. Burger, P. C. and Vogel, F. S., The development of the pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome, Am J Pathol., 73: 457 (1973).Google Scholar
  13. Candy, J. M., Klinowski, J., Perry, R. H., Perry, E. K., Fairbairn, A., Oakley, A. E., Carpenter, T. A., Atack, J. R., Blessed, G. and Edwardson, J. A., Aluminosilicates and senile plaque formation in Alzheimer’s disease, Lancet 1: 354 (1986).CrossRefGoogle Scholar
  14. Chen, L., Neurofibrillary change on Guam, Arch Neurol., 38: 16 (1981).CrossRefGoogle Scholar
  15. Corsellis, J. A. N., Sub-acute sclerosing leucoencephalitis: clinical and pathological report of two cases, J Ment Sci., 97: 570 (1951).Google Scholar
  16. Corsellis, J. A. N., Bruton, C. J. and Freeman-Browne, D., The aftermath of boxing, Psychol Med., 3: 270 (1973).CrossRefGoogle Scholar
  17. Davies, P. and Maloney, A. J. F., Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet, 2: 1403 (1976).CrossRefGoogle Scholar
  18. Dayan, A. D., Quantitative human studies in the aged human brain, Acta Neuropathol (Berl), 16: 95 (1970).CrossRefGoogle Scholar
  19. DeBoni, U., Seger, M. and McLachlan, D. R. C., Functional consequences of chromatin bound aluminum in cultured human cells, Neurotoxicol., 1: 65 (1980).Google Scholar
  20. Delisle, M. B. and Carpenter, S., Neurofibrillary axonal swellings and amyotrophic lateral sclerosis, J. Neurol Sci., 63: 241 (1984).CrossRefGoogle Scholar
  21. Duffy, P. E. and Tennyson, V. M., Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus ceruleus in Parkinson’s disease, J. Neuropathol Exp Neurol., 24: 398 (1965).CrossRefGoogle Scholar
  22. Gambetti, P., Shecket, G., Ghetti, B., Hirano, A. and Dahl, D., Neurofibrillary change in human brain. An immunocytochemical study with a neurofilament antiserum, J. Neuropathol Exp Neurol., 42: 69 (1983).CrossRefGoogle Scholar
  23. Gibson, P. H. and Tomlinson, B. E., Number of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease, J. Neurol Sci., 33: 199 (1977).CrossRefGoogle Scholar
  24. Glenner, G. G., Amyloid deposits and amyloidosis: The B-Fibrilloses (1st of two parts), N Eng J Med., 302: 1283 (1980a).CrossRefGoogle Scholar
  25. Glenner, G. G., Amyloid deposits and amyloidosis: The B-fibrilloses (2nd of two parts), N Eng J. Med., 302: 1333 (1980b).CrossRefGoogle Scholar
  26. Goldman, J. E., The association of actin with Hirano bodies, J Neuropathol Exp Neurol., 42: 146 (1983a).CrossRefGoogle Scholar
  27. Goldman, J. E., Yen, S., Chiu, F. and Peress, N., Lewy bodies of Parkinson’s disease contain neurofilament antigens, Science, 221: 1082 (1983b).CrossRefGoogle Scholar
  28. Greene, C., Munoz-Garcia, D., Perl, D. P. and Pendlebury, W. W., Accumulation of phosphorylated neurofilaments in the anterior horn motor neurons of ALS patients (abst), J Neuropathol Exp Neurol., in press (1986).Google Scholar
  29. Grundke-Iqbal, I., Johnson, A. B., Wisniewski, H. M., Terry, R. D. and Iqbal, K., Evidence that Alzheimer neurofibrillary tangles originate from neurotubules, Lancet, 1: 578 (1979).CrossRefGoogle Scholar
  30. Grundke-Iqbal, I., Iqbal, K., Tung, Y. C. and Wisniewski, H. M., Alzheimer paired helical filaments: Immunochemical identification of polypeptides, Acta Neuropathol (Berl), 62: 259 (1984).CrossRefGoogle Scholar
  31. Grundke-Iqbal, I., Iqbal, K., Tung, Y. C. and Wisniewski, H. M., Alzheimer paired helical filaments: Cross-reacting polypeptide/s normally present in brain, Acta Neuropathol (Berl), 66: 52 (1985a).CrossRefGoogle Scholar
  32. Grundke-Iqbal, I., Wang, G. P., Iqbal, K., Tung, Y. C. and Wisniewski, H. M., Alzheimer paired helical filaments: Identification of polypeptides with monoclonal antibodies, Acta Neuropathol (Berl), 68: 279 (1985b).CrossRefGoogle Scholar
  33. Hirano, A., Pathology of amyotrophic lateral sclerosis, in: “Slow, Latent, and Temperate Infections. NINDB Monograph No. 2.” D. C. Gajdusek, C. J. Gibbs eds., National Institutes of Health, Washington, D.C. (1965).Google Scholar
  34. Hirano, A., Malamud, N., Elizan, T. S. and Kurland, L. T., myotrophic lateral sclerosis and parkinsonism-dementia complex on Guam, Arch Neurol., 15: 35 (1966).CrossRefGoogle Scholar
  35. Hirano, A., Dembitzer, H. M., Kurland, L. T. and Zimmerman, H. M., The fine structure of some intraganglionic alterations. Neurofibrillary tangles, granulovacuolar bodies, and “rod-like” structures as seen in Guam amyotrophic lateral sclerosis and parkinsonism-dementia complex, J Neuropathol Exp Neurol., 27: 167 (1968).CrossRefGoogle Scholar
  36. Hirano, A., Donnenfeld, H., Sasaki, S. and Nakano, I., Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis, J Neuropathol Exp Neurol., 43: 461 (1984a).CrossRefGoogle Scholar
  37. Hirano, A., Nakano, I. and Kurland, L. T., Fine structural study of neurofibrillary changes in family with amyotrophic lateral sclerosis, J Neuropathol Exp Neurol., 43: 471 (1984b).CrossRefGoogle Scholar
  38. Hyman, B. T., Van Hoesen, G. W., Damasio, A. R. and Barnes, C. L., Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation, Science, 225: 1168 (1984).CrossRefGoogle Scholar
  39. Ihara, Y., Abraham, C. and Selkoe, D. J., Antibodies to paired helical filaments in Alzheimer’s disease do not recognize normal brain proteins, Nature, 304: 727 (1983).CrossRefGoogle Scholar
  40. Iqbal, K., Zaidi, T., Thompson, C. H., Merz, P. A. and Wisniewski, H. M., Alzheimer paired helical filaments: Bulk isolation, solubility, and protein composition, Acta Neuropathol (Berl), 62: 167 (1984).CrossRefGoogle Scholar
  41. Johnston, M. V., Mckinney, M. and Coyle, J. T., Evidence for a cholinergic projection to neocortex from neurons in basal forebrain, Proc Natl Acad Sci, USA, 76: 5392 (1979).CrossRefGoogle Scholar
  42. Khachaturian, Z. S., Diagnosis of Alzheimer’s disease, Arch Neurol, 42: 1097 (1985).CrossRefGoogle Scholar
  43. Kidd, M., Paired helical filaments in electron microscopy of Alzheimer’s disease, Nature, 197: 192 (1963).CrossRefGoogle Scholar
  44. Kidd, M., Allsop, D. and Landon, M., Senile plaque amyloid, Interdiscipl Topics Geront., 19: 114 (1985).Google Scholar
  45. Kidd, M., Allsop, D. and Landon, M., Senile plaque amyloid, paired helical filaments, and cerebrovascular amyloid in Alzheimer’s disease are all deposits of the same protein, Lancet, 1: 278 (1985).CrossRefGoogle Scholar
  46. Kirschner, D. A., Abraham, C. and Selkoe, D. J., X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-B conformation, Proc Natl Acad Sci, USA, 83: 503 (1986).CrossRefGoogle Scholar
  47. Klatzo, I., Wisniewski, H. and Streicher, E., Experimental production of neurofibrillary degeneration, J. Neuropathol Exp Neurol., 24: 187 (1965).CrossRefGoogle Scholar
  48. Knox, C. A., Yates, R. D. and Chen, I-Ii, Brain aging in normotensive and hypertensive strains of rats, Acta Neuropathol (Berl), 52: 7 (1980).CrossRefGoogle Scholar
  49. Kosik, K. S., Duffy, L. K., Dowling, M. M., Abraham, C., McCluskey, A. and Sekloe, D. J., Microtubule-associated protein 2: Monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles, Proc Natl Acad Sci, USA, 81: 7941 (1984).CrossRefGoogle Scholar
  50. Lazarides, E., Intermedite filaments as mechanical integrators of cellular space, Nature, 283: 249 (1980).CrossRefGoogle Scholar
  51. Mandybur, T. I., Nagpaul, A. S., Pappas, Z. and Niklowitz, W. J., Alzheimer neurofibrillary change in subacute sclerosing panencephalitis, Ann Neurol., 1: 103 (1977).CrossRefGoogle Scholar
  52. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L. and Beyreuther, K., Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc Natl Acad Sci, USA, 82: 4245 (1985).CrossRefGoogle Scholar
  53. Munoz-Garcia, D. and Ludwin, S. K., Classic and generalized variants of Pick’s disease; A clinicopathological, ultrastructural, and immunocytochemical comparative study, Ann Neurol., 16: 467 (1984).CrossRefGoogle Scholar
  54. Munoz-Garcia, D., Pendlebury, W. W., Kessler, J. B. and Perl, D. P., An immunocytochemical comparison of cytoskeleton proteins in aluminuminduced and Alzheimer-type neurofibrillary tangles, Acta Neuropathol (Berl), in press (1986).Google Scholar
  55. Perl, D. P., Gajdusek, C., Garruto, R. M., Yanagihara, R. T. and Gibbs Jr., C. J., Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam, Science, 217: 1053 (1982).CrossRefGoogle Scholar
  56. Perl, D. P. and Brody, A. R., Alzheimer’s disease: x-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons, Science, 208: 207 (1980).CrossRefGoogle Scholar
  57. Perl, D. P., Munoz-Garcia, D., Good, P. F. and Pendlebury, W. W., Intracytoplasmic aluminum accumulation in neurofibrillary tangle-bearing neurons: detection by laser probe mass analyzer (abst), Ann Neurol., 18: 143 (1985).Google Scholar
  58. Perry, G., Rizzuto, N., Autilio-Gambetti, L. and Gambetti, P., Paired helical filaments from Alzheimer disease patients contain cytoskeletal components, Proc Natl Acad Sci, USA, 82: 3916 (1985).CrossRefGoogle Scholar
  59. Peterson, C., Suzuki, K., Kress, Y. and Goldman, J. E., Microfilament lattices (Hirano bodies) in brindled mice (abst). J Neuropathol Exp Neurol., 44: 326 (1985).CrossRefGoogle Scholar
  60. Price, D., Struble, R. G., Altschuler, R. J., Casnova, M. F., Cork, L. C. and Murphy, D. B., Aggregation of tubulin in neurons in Alzheimer’s disease (abst), J. Neuropathol Exp Neurol., 44: 366 (1985).CrossRefGoogle Scholar
  61. Saper, C. B., German, D. C. and White, C. L., Neuronal pathology in the nucleus basalis and associated cell groups in senile dementia of the Alzheimer’s type: possible role in cell loss, Neurol., 35: 1089 (1985).CrossRefGoogle Scholar
  62. Sayre, L. M., Autilio-Gambetti, L. and Gambetti, P., Pathogenesis of experimental giant neurofilamentous axonopathies: A unified hypothesis based on chemical modification of neurofilaments, Brain Res Rev., 10: 69 (1985).CrossRefGoogle Scholar
  63. Scholz, W., Studien zur Pathologie der Hirngefasse: Die drusige Entartung der Hirnarterien und capillaren, Z des Neurol Psychiatr., 162: 694 (1938).CrossRefGoogle Scholar
  64. Schwab, R. S. and England Jr., A. C., Parkinson syndromes due to various specific causes, in: “Diseases of the Basal Ganglia. Handbook of Clinical Neurology”, P. J. Vinken, G. W. Brun, (eds), Amsterdam, North-Holland (1968).Google Scholar
  65. Selkoe, D. J., Liem, R. K. H., Yen, S-H. and Shelanski, M. L., Biochemical and immunological characterization of neurofilaments in experimental neurofibrillary degeneration induced by aluminum, Brain Res., 163: 235 (1979).CrossRefGoogle Scholar
  66. Selkoe, D. J., Ihara, Y. and Salazar, F. J., Alzheimer’s disease: Insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea, Science, 215: 1243 (1982a).CrossRefGoogle Scholar
  67. Selkoe, D. J., Abraham, C. and Ihara, Y., Brain transglutaminase: In vitro crosslinking of human neurofilament proteins into insoluble polymers, Proc Natl Acad Sci, USA, 79: 6070 (1982b).CrossRefGoogle Scholar
  68. Selkoe, D. and Abraham, C., Biochemical analyses of senile plaque amyloid cores purified by fluorescence activated cell sorting (abst), J Neuropathoi Exp Neurol., 44: 365 (1985).CrossRefGoogle Scholar
  69. Stern, A. J., Perl, D. P., Munoz-Garcia, D., Good, P. F., Selkoe, D. J. and Abraham, C., Investigation of silicon and aluminum content in isolated senile plaque cores by laser microprobe mass analysis (LAMMA) (abst), J Neuropathol Exp Neurol., in press (1986).Google Scholar
  70. Sternberger, L. A. and Sternberger, N. H., Monoclonal antibodies distinguish phosphorylated and non-phosphorylated forms of neurofilaments in situ, Proc Natl Acad Sci, USA, 80: 6126 (1983).CrossRefGoogle Scholar
  71. Sternberger, N. H., Sternberger, L. A. and Ulrich, J., Aberrant neurofilament phosphorylation in Alzheimer disease, Proc Natl Acad Sci, USA, 82: 4274 (1985).CrossRefGoogle Scholar
  72. Struble, R. G., Cork, L. C., Whitehouse, P. J. and Price, D. L., Cholinergic innervation in neuritic plaques, Science. 216: 413 (1982).CrossRefGoogle Scholar
  73. Tellez-Nagel, I. and Wisniewski, H. M., Ultrastructure of neurofibrillary tangles in Steele-Richardson-Olszewski syndrome, Arch Neurol., 29: 324 (1973).CrossRefGoogle Scholar
  74. Terry, R. D. and Pena, C., Experimental production of neurofibrillary degeneration, J Neuropathol Exp Neurol., 24: 200 (1965).CrossRefGoogle Scholar
  75. Terry, R. D., Peck, A., Deteresa, R., Schechter, R. and Horoupian, D. S., Some morphometric aspects of the brain in senile dementia of the Alzheimer type, Ann Neurol., 10: 184 (1981).CrossRefGoogle Scholar
  76. Troncoso, J. C., Price, D. L., Griffin, J. W. and Parhad, I. M., Neurofibrillary axonal pathology in aluminum intoxication, Ann Neurol., 12: 278 (1982).CrossRefGoogle Scholar
  77. Troncoso, J. C., Sternberger, L. A. and Sternberger, N. H., Immunocytochemical studies of neurofilament antigens in the neurofibrillary pathology induced by aluminum (abst), J Neuropathol Exp Neurol., 44: 376 (1985).Google Scholar
  78. Volk, B., Paired helical filaments in rat spinal ganglia following chronic alcohol administration: An electron microscopic investigation, Neuropathol Appl Neurobiol., 6: 143 (1980).CrossRefGoogle Scholar
  79. Wang, G. P., Grundke-Iqbal, I., Kascsak, R. J., Iqbal, K. and Wisniewski, H. M., Alzheimer neurofibrillary tangles: Monoclonal antibodies to inherent antigen (s), Acta Neuropathol (Berl), 62: 268 (1984).CrossRefGoogle Scholar
  80. Whitehouse, P. J., Alzheimer’s disease and senile dementia. Loss of neurons in the basal forebrain, Science, 215: 1237 (1982).CrossRefGoogle Scholar
  81. Wisniewski, H. M., Narkiewicz, O. and Wisniewski, K., Topography and dynamics of neurofibrillary degeneration in aluminum encephalopathy, Acta Neuropathol (Berl), 9: 127 (1967).CrossRefGoogle Scholar
  82. Wisniewski, H. M., Narang, H. K. and Terry, R. D., Neurofibrillary tangles of paired helical filaments, J. Neurol Sci., 27: 173 (1976).CrossRefGoogle Scholar
  83. Wisniewski, K., Jervis, G. A., Moretz, R. C. and Wisniewski, H. M., Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia, Ann Neurol., 5: 288 (1979).CrossRefGoogle Scholar
  84. Wisniewski, H. M., Sturman, J. A. and Shek, J. W., Aluminum chloride-induced neurofibrillary changes in the developing rabbit: a chronic animal model, Ann Neurol., 8: 479 (1980).CrossRefGoogle Scholar
  85. Wisniewski, H. N., Sturman, J. A. and Shek, J. W., Chronic model of neurofibrillary changes induced in mature rabbits by metallic aluminum, Neurobiol Aging, 3: 11 (1982).CrossRefGoogle Scholar
  86. Yen, S-H. C., Guskin, R. and Terry, R. D., Immunocytochemical studies of neurofibrillary tangles, Am J Pathol., 104: 77 (1981).Google Scholar
  87. Yen, S. H., Horoupian, D. S. and Terry, R. D., Immunocytochemical comparison of neurofibrillary tangles in senile dementia of Alzheimer type, progressive supranuclear palsy, and postencephalitic parkinsonism, Ann Neurol., 13: 172 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • William W. Pendlebury
    • 1
  • David Munoz-Garcia
    • 1
  • Daniel P. Perl
    • 1
  1. 1.Department of Pathology (Neuropathology)University of Vermont College of MedicineBurlingtonUSA

Personalised recommendations