Advertisement

Molecular Mechanisms of Neuronal Excitability: Possible Involvement of CaM Kinase II in Seizure Activity

  • William C. Taft
  • James R. Goldenring
  • Robert J. DeLorenzo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)

Abstract

An understanding of the molecular mechanisms that underlie neuronal responsiveness is an important goal of contemporary neuroscience. The specific biochemical events that modulate excitability of neurons and neuronal systems will provide important insights into the complex regulatory mechanisms of the nervous system. In the clinical neurosciences, an understanding of these molecular events may provide significant avenues for the development of treatment protocols for diseases of the nervous system.

Keywords

Neuronal Excitability Dependent Protein Kinase Postsynaptic Density Calmodulin Binding Protein Hippocampal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta-Urquidi, J., Neary, J. T., Goldenring, J. R., Alkon, D. L. and DeLorenzo, R. J., Modulation of ICa and late K+ currents by intrasomatic injection of Ca-calmodulin dependent kinase in Hermissenda giant neurons, Soc. Neurosci. Abstrs., 10: 1129 (1984a).Google Scholar
  2. Acosta-Urquidi, J., Alkon, D. L. and Neary, J. T., Ca2+-dependent protein kinase injection in a photoreceptor mimics biophysical effects of associative learning, Science 224: 1254–1257 (1984b).CrossRefGoogle Scholar
  3. Alkon, D. L., Neural correlates of associative training in Hermissenda, J. Gen. Physiol., 65: 46–56 (1975).CrossRefGoogle Scholar
  4. Alkon, D. L., Voltage-dependent calcium and potassium conductances: a contingency mechanism for an associative learning model, Science 205: 810–816 (1979).CrossRefGoogle Scholar
  5. Alkon, D. L., Shoukimas, J. J. and Heldman, E., Calcium mediated decrease of a voltage-dependent potassium current, Biophys. J., 40: 245–250 (1982a).CrossRefGoogle Scholar
  6. Alkon, D. L., Lederhendler, I. and Shoukimas, J. J., Primary changes of membrane currents during retention of associative learning, Science 215: 693–695 (1982b).CrossRefGoogle Scholar
  7. Alkon, D. L., Acosta-Urquidi, J., Olds, J., Kuzma, G. and Neary, J., Protein kinase injection reduces voltage-dependent potassium currents, Science 219: 303–306, (1983).CrossRefGoogle Scholar
  8. Alkon, D. L., Calcium-mediated reduction of ionic currents: a biophysical memory trace, Science 226: 1037–1045, (1984).CrossRefGoogle Scholar
  9. Alkon, D. L., Farley, J., Sakakibara, M. and Hay, B., Voltage-dependent calcium and calcium-activated potassium currents of a molluscan photoreceptor, Biophys. J. 46: 605–614 (1984).CrossRefGoogle Scholar
  10. Alkon, D. L. and Sakakibara, M., Prolonged inactivation of a Ca2+ dependent K+ current but not Ca2+ current by light induced elevation of intracellular calcium, Soc. Neurosci. Abstr. 10: 10 (1984).Google Scholar
  11. Alkon, D. L., Sakakibara, M., Forman, R. R., Harrigan, J., Lederhendler, I. and Farley, J., Reduction of two voltage-dependent K+ currents mediates retention of a learned association, Behav. Neural Biol. 44: 278–300 (1985).CrossRefGoogle Scholar
  12. Alkon, D. L. and Sakakibara, M., Calcium activates and inactivates a photoreceptor soma K current, Biophys. J., in press (1986).Google Scholar
  13. Aloyo, V. J., Zweirs, H. and Gispen, W. H., B-50 protein kinase and kinase C in rat brain, Prog. Brain Res. 56: 303–315 (1982).CrossRefGoogle Scholar
  14. Baraban, J. M., Snyder, S. H. and Alger, B. E., Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: electrophysiological effects of phorbol esters, Proc. Natl. Acad. Sci. USA 82: 2538–2542 (1985).CrossRefGoogle Scholar
  15. Bennett, M. K., Erondu, N. E. and Kennedy, M. B., Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain, J. Biol. Chem. 258: 12735–12744 (1983).Google Scholar
  16. Burke, B. and DeLorenzo, R. J., Calcium and calmodulin regulated endogenous tubulin kinase activity in synaptic nerve terminal preparations, Brain Res., 236: 393–415 (1982).CrossRefGoogle Scholar
  17. Byrne, M. C., Gottlieb, R., and McNamara, J. O., Amygdala kindling induces muscarinic cholinergic receptor declines in a highly specific distribution within the limbic system, Exp. Neurol. 69: 85–98 (1980).CrossRefGoogle Scholar
  18. Castelluci, V. F., Kandel, E. R., Schwartz, J. H., Wilson, F. D., Nairn, A. C. and Greengard, P., Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia, Proc. Natl. Acad. Sci. USA 77: 7492–7496 (1980).CrossRefGoogle Scholar
  19. Cheung, W. Y., Calmodulin role in cellular regulation, Science 207: 19–27 (1980).CrossRefGoogle Scholar
  20. DeCamilli, P., Camerson, R. and Greengard, P., Synapsin I (Protein I), a nerve terminal specific phosphoprotein I: Its general distribution in synapses of the central and peripheral nervous system demonstrated by immuno-fluorescence in frozen and plastic sections, J. Cell Biol. 96: 1337–1354 (1983).CrossRefGoogle Scholar
  21. DeLorenzo, R. J., Calcium-dependent phosphorylation of specific synaptosomal fraction proteins: possible role of phosphoproteins in mediating neurotransmitter release, Biochem. Biophys. Res. Commun. 71: 590–597 (1976).CrossRefGoogle Scholar
  22. DeLorenzo, R. J., Freedman, S. D., Yohe, W. B. and Maurer, S. C., Stimulation of calcium-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulinlike protein isolated from synaptic vesicles, Proc. Natl. Acad. Sci. USA 76: 1838–1842 (1979).CrossRefGoogle Scholar
  23. DeLorenzo, R. J., Role of calmodulin in neurotransmitter release and synaptic function, Ann. N. Y. Acad. Sci. 356: 92–109 (1980a).CrossRefGoogle Scholar
  24. DeLorenzo, R. J., Phenytoin: calcium-calmodulin-dependent protein phosphorylation and neurotransmitter release, in: “Antiepileptic Drugs: Mechanism of Action,” G. H. Glaser, J. K. Penry, and D. W. Woodbury, eds., Raven, New York, pp 399–414 (1980b).Google Scholar
  25. DeLorenzo, R. J., Calcium, calmodulin and synaptic function: modulation of neurotransmitter release, nerve terminal protein phosphorylations, and synaptic vesicle morphology by calcium and calmodulin, in: “Regulatory Mechanism of Synaptic Transmission,” R. Tapie and C. W. Cotman, eds., Plenum, New York and London, pp 205–240 (1981a).CrossRefGoogle Scholar
  26. DeLorenzo, R. J., The calmodulin hypothesis of neurotransmission, Cell Calcium 2: 365–385 (1981b).CrossRefGoogle Scholar
  27. DeLorenzo, R. J., Burdette, S. and Holderness, J., Benzodiazepine inhibition of the calcium-calmodulin protein kinase system in brain membrane, Science 213: 546–549 (1981).CrossRefGoogle Scholar
  28. DeLorenzo, R. J., Gonzales, B., Goldenring, J. R., Bowling, A. C. and Jacobson, R., Ca2+-calmodulin tubulin kinase system and its role in mediating the Ca2+ signal in brain, in: “Progress in Brain Research,” Volume 56, W. H. Gispen and A. Routtenberg, eds., Elsevier Biomedical Press, Amsterdam, pp. 255–286 (1982).Google Scholar
  29. DeLorenzo, R. J., Calmodulin in neurotransmitter release and synaptic function, Fed. Proc. 41: 2265–2272 (1982).Google Scholar
  30. DePeyer, J. E., Cachelin, A. B., Levitan, I. B. and Reuter, H., Ca2+-activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation, Proc. Natl. Acad. Sci. USA 79: 4207–4211 (1982).CrossRefGoogle Scholar
  31. DeRiemer, S., Strong, J., Albert, K., Greengard, P. and Kaczmarek, L., Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C., Nature 313: 313–316 (1985).CrossRefGoogle Scholar
  32. Douglas, W. W., Stimulus-secretion coupling: the concept and clues from chromaffin and other cells, Br. J. Pharmacol. 34: 451–474 (1968).CrossRefGoogle Scholar
  33. Farber, D. B. and Wasterlain, C. G., Inhibition of kindled seizure by diazepam: mediation by phosphoproteins?, Proc. Natl. Acad. Sci. USA, in press (1986).Google Scholar
  34. Farley, J. and Alkon, D. L., Membrane depolarization accumulates during acquisition of an associative behavioral change, Science 210: 1375–1376 (1980).CrossRefGoogle Scholar
  35. Farley, J. and Alkon, D. L., Associative neural and behavioral change in Hermissenda: consequences of nervous system orientation for light and pairing specificity, J. Neurophysiol. 48: 785–807 (1982).Google Scholar
  36. Farley, J. and Auerbach, S., Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning, Nature 319: 220–223 (1986).CrossRefGoogle Scholar
  37. Fukunaga, K., Yamamoto, H., Matsui, K., Higashu, K. and Miyamoto, E., Purification and characterization of a Ca2+-calmodulin-dependent protein kinase from rat brain, J. Neurochem. 39: 1607–1617 (1982).CrossRefGoogle Scholar
  38. Gastaut, H., Jasper, H., Bancaud, J. and Waltregny, A., eds., “The Physiopathogenesis of the Epilepsies,” Charles C. Thomas, Springfield, Illinois (1969).Google Scholar
  39. Glaser, G. H., Epilepsy, in: “Recent Advances in Clinical Neurology,” W. P. Matthews, ed., Churchill-Livingston, London (1975).Google Scholar
  40. Glaser, G. H., Penry, J. K. and Woodbury, D. M., eds., “Antiepileptic Drugs: Mechanisms of Action,” Raven Press, New York (1980).Google Scholar
  41. Goddard, G. V., Mclntyre, D. C. and Leech, C. K., A permanent change in brain function resulting from daily electrical stimulation, Exp. Neurol. 25: 243–330 (1969).CrossRefGoogle Scholar
  42. Goldenring, J. R., Gonzalez, B. and DeLorenzo, R. J., Isolation of brain Ca2+-calmodulin tubulin kinase containing calmodulin binding proteins, Biochem. Biophys. Res. Commun. 108: 421–428 (1982).CrossRefGoogle Scholar
  43. Goldenring, J. R., Gonzalez, B., McGuire, J. S., Jr. and DeLorenzo, R. J., Purification and characterization of a calmodulin-dependent protein kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins, J. Biol. Chem. 258: 12632–12640 (1983).Google Scholar
  44. Goldenring, J. R., McGuire, J. S., Jr., and DeLorenzo, R. J., Identification of the major post-synaptic density protein as a homologous with the major calmodulin-binding subunit of a calmodulin-dependent protein kinase, J. Neurochem. 42: 1077–1084 (1984).CrossRefGoogle Scholar
  45. Goldenring, J. R., Vallano, M. L. and DeLorenzo, R. J., Phosphorylation of microtubule-associated protein 2 at distinct sites by calmodulin-dependent and cyclic-AMP-dependent kinases, J. Neurochem. 45: 900–905 (1985).CrossRefGoogle Scholar
  46. Goldenring, J. R., Wasterlain, C. G., Destreicher, A. B., deGraan, P. N. E., Farber, D. B., Glaser, G. and DeLorenzo, R. J., Kindling induces a long lasting change in the activity of a hippocampal membrane calmodulindependent protein kinase, Brain Res., in press (1986a).Google Scholar
  47. Grab, D. J., Berzins, K., Cohen, R. S. and Siekevitz, P., Presence of calmodulin in postsynaptic densities isolated from canine cerebral cortex, J. Biol. Chem. 254: 8690–8696 (1979).Google Scholar
  48. Grab, D. J., Carlin, R. K. and Siekevitz, P., The presence and functions of calmodulin in the postsynaptic density, Ann. N. Y. Acad. Sci. 356: 55–72 (1980).CrossRefGoogle Scholar
  49. Grab, D. J., Carlin, R. K. and Siekevitz, P., Function of calmodulin in postsynaptic density II. Presence of calmodulin-activable protein kinase activity, J. Cell Biol. 89: 440–448 (1981).CrossRefGoogle Scholar
  50. Hawkins, R. D., Abrams, T. W., Carew, T. J. and Kandel, E. R., Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica, Science 219: 397–404 (1983).CrossRefGoogle Scholar
  51. Jasper, H. H., Ward, A. A., Jr. and Pope, A., eds., “Basic Mechanisms of the Epilepsies,” Little, Brown, Boston (1969).Google Scholar
  52. Kandel, E. R. and Schwartz, J. H., Molecular biology of learning: modulation of transmitter release, Science 218: 433–443 (1982).CrossRefGoogle Scholar
  53. Katz, B. and Miledi, R., Spontaneous and evoked activity of motor nerve endings in calcium Ringer, J. Physiol (Lond) 203: 689–706 (1969).Google Scholar
  54. Katz, B. and Miledi, R., Further study of the role of calcium in synaptic transmission, J. Physiol. (Lond) 207: 789–801 (1970).Google Scholar
  55. Kelly, P. T. and Cotman, C. W., Synaptic protein: characterization of tubulin and actin and identification of a distinct postsynaptic density protein, J. Cell Biol. 79: 173–183 (1978).CrossRefGoogle Scholar
  56. Kelly, P. T., McGuinness, T. L. and Greengard, P., Evidence that the major postsynaptic density protein is a component of a Ca2+ /calmodulindependent protein kinase, Proc. Natl. Acad. Sci. USA, 81: 945–949 (1984).CrossRefGoogle Scholar
  57. Kennedy, M., Experimental approaches to understanding the role of protein phosphorylation in the regulation of neuronal function, Ann. Rev. Neurosci. 6: 493–525 (1983).CrossRefGoogle Scholar
  58. Kennedy, M. B., Bennett, M. K. and Erondu, N. E., Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase, Proc. Natl. Acad. Sci. USA 80: 7357–7361 (1983).CrossRefGoogle Scholar
  59. Klee, C. B., Crouch, T. H. and Richman, P. G., Calmodulin, Ann. Rev. Biochem. 49: 489–515 (1980).CrossRefGoogle Scholar
  60. Larson, R. E., Goldenring, J. R., Vallano, M. L. and DeLorenzo, R. J., Identification of endogenous calmodulin-dependent kinase and calmodulin binding proteins in cold-stable microtubule preparations from rat brain, J. Neurochem. 44: 1566–1574 (1985).CrossRefGoogle Scholar
  61. Levitan, I. B., Lemos, J. R. and Novak-Hofer, I., Protein phosphorylation and the regulation of ion channels, Trends Neurosci. 6: 496–499 (1983).CrossRefGoogle Scholar
  62. Llinas, R., McGuinness, T. L., Leonard, C. S., Sugimori, M. and Greengard, P., Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse, Proc. Natl. Acad. Sci, USA 82: 3035–3039 (1985).CrossRefGoogle Scholar
  63. Matus, A., The postsynaptic density, Trends Neurosci. 4: 51–53 (1981).CrossRefGoogle Scholar
  64. McGuinness, T. L., Lai, Y., Greengard, P., Woodgett, J. R. and Cohen, P., A multifunctional calmodulin-dependent protein kinase, FEBS Lett., 163: 329–334 (1983).CrossRefGoogle Scholar
  65. McNamara, J. O., Selective alterations of regional beta-adrenergic receptor binding in the kindling model of epilepsy, Exp. Neurol. 61: 582–591 (1978).CrossRefGoogle Scholar
  66. Nestler, E. J. and Greengard, P., Protein phosphorylation in the brain, Nature 305: 583–588 (1983).CrossRefGoogle Scholar
  67. Nestler, E. J., Walaas, S. I. and Greengard, P., Neuronal phosphoproteins: Physiological and clinical implications, Science 225: 1357–1364 (1984).CrossRefGoogle Scholar
  68. Osterrieder, W., Brum, G., Hescheler, J., Trautwein, W., Flockerzi, V. and Hofmann, F., Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current, Nature 298: 576–578 (1982).CrossRefGoogle Scholar
  69. Ouimet, C. C., McGuinness, T. L. and Greengard, P., Immunocytochemical localization of calcium/calmodulin dependent protein kinase II in brain, Proc. Natl. Acad. Sci. USA 81: 5604–5608 (1984).CrossRefGoogle Scholar
  70. Racine, R. J., Kindling: The first decade, J. Neurosurg. 3: 234–252 (1978).CrossRefGoogle Scholar
  71. Rubin, R. P., The role of calcium in the release of neurotransmitter substances and hormones, Pharmacol. Rev. 22: 389–428 (1972).Google Scholar
  72. Sakakibara, M., Alkon, D. L., DeLorenzo, R. J., Goldenring, J. R., Neary, J. T. and Heldman, E., Modulating of calcium-mediated inactivation of ionic currents by Ca2+/calmodulin-dependent protein kinase II, Biophys. J., in press (1986).Google Scholar
  73. Schulman, H. and Greengard, P., Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by “calciumdependent regulator”, Proc. Natl. Acad. Sci. USA 75: 5432–5436 (1978a).CrossRefGoogle Scholar
  74. Schulman, H. and Greengard, P., Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein, Nature 271: 478–479 (1978b).CrossRefGoogle Scholar
  75. Schulman, H., Phosphorylation of microtubule-associated proteins by a calcium/ calmodulin-dependent protein kinase, J Cell Biol 99: 15–21 (1984).CrossRefGoogle Scholar
  76. Siegelbaum, S. A., Camardo, J. S. and Kandel, E. R., Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones, Nature 299: 413–417 (1982).CrossRefGoogle Scholar
  77. Siegelbaum, S. A. and Tsien, R. W., Modulation of gated ion channels as a mode of transmitter action, Trends Neurosci. 6: 307–312 (1983).CrossRefGoogle Scholar
  78. Taft, W. C., Goldenring, J. R., Buckholz, T. M. and DeLorenzo, R. J., Benzodiazepine inhibition of purified CaM-dependent kinase, Pharmacologist 27: 185 (1985).Google Scholar
  79. Vallano, M. L., Buckholz, T. M. and DeLorenzo, R. J., Phosphorylation of neurofilament proteins by endogenous calcium/calmodulin dependent protein kinase, Biochem. Biophys. Res. Commun. 130: 957–963 (1985a).CrossRefGoogle Scholar
  80. Vallano, M. L., Goldenring, J. R., Buckholz, T. M., Larson, R. E. and DeLorenzo, R. J., Separation of endogenous calmodulin-and cAMP-dependent kinases from microtubule preparations, Proc. Natl. Acad. Sci. USA 82: 3203–3206 (1985b).CrossRefGoogle Scholar
  81. Wasterlain, C. G., Morin, A. M. and Jonec, V., Kindling: a pharmacological approach, Electroencephalog. Clin. Neurophysiol. 36: 264–273 (1982).Google Scholar
  82. Wasterlain, C. G. and Farber, D. B., Kindling alters the calcium/calmodulin-dependent phosphorylation of synaptic plasma membrane proteins in rat hippocampus, Proc. Natl. Acad. Sci. USA 81: 1225–1257 (1984).CrossRefGoogle Scholar
  83. Yamauchi, T. and Fujisawa, J., Purification and characterization of the brain calmodulin-dependent protein kinase (Kinase II), which is involved in the activation of tryptophan-5-mono-oxygenase, Eur. J. Biochem. 132: 15–21 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • William C. Taft
    • 1
  • James R. Goldenring
    • 2
  • Robert J. DeLorenzo
    • 1
  1. 1.Departments of Neurology and PharmacologyMedical College of Virginia - VCURichmondUSA
  2. 2.Department of SurgeryYale University School of MedicineNew HavenUSA

Personalised recommendations