Advertisement

B-50 Phosphorylation, Protein Kinase C and the Induction of Excessive Grooming Behavior in the Rat

  • Louise H. Schrama
  • Pierre N. E. De Graan
  • A. Beate Oestreicher
  • Willem Hendrik Gispen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)

Abstract

Behaviorally active neuropeptides might affect synaptic plasticity by changing the degree of phosphorylation of synaptic proteins. Neuronal electrical activity and neurotransmission are accompanied by covalent modification of synaptic proteins through cyclic phosphorylation and dephosphorylation (c.f. Weller, 1979). Studies using behavioral paradigms similar to those used to measure the behavioral effects of melanocortins (ACTH/MSH) suggested that the acquisition of new information may be accompanied by changes in the degree of phosphorylation of synaptic phosphoproteins (Glassman et al., 1973). The original idea was to study the in vitro modulation of synaptic plasma membrane phosphorylation by ACTH1-24 and its behaviorally active fragments and to compare the structural requirements of ACTH in this assay with those influencing the extinction of active avoidance behavior (Greven and De Wied, 1973). In our first study along this line, we noted that high concentrations of ACTH1-24 indeed inhibited the endogenous phosphorylation of several phosphoproteins in rat brain synaptic membranes (Zwiers et al., 1976). These phosphoproteins were phosphorylated by a cyclic AMP-independent mechanism, at that time the most important phosphorylation system studied (Zwiers et al., 1976). Our next step was to investigate the nature of the affected substrate proteins and their corresponding kinase(s).

Keywords

Phorbol Ester Inositol Phosphate Synaptic Plasma Membrane Inositol Phospholipid Isoelectric Focussing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akers, R. F. and Routtenberg, A., Protein kinase C phosphorylates a 47 Mr protein (F1) directly related to synaptic plasticity, Brain Res. 334: 147–151 (1985).CrossRefGoogle Scholar
  2. Aloyo, V. J., Zwiers, H. and Gispen, W. H., B-50 protein kinase and kinase C in rat brain, Prog. Brain Res. 56: 303–315 (1982).CrossRefGoogle Scholar
  3. Aloyo, V. J., Zwiers, H. and Gispen, W. H., Phosphorylation of B-50 by calcium-activated phospholipid-dependent protein kinase and B-50 protein kinase, J. Neurochem. 41: 649–653 (1983).CrossRefGoogle Scholar
  4. Berridge, M. J. and Irvine, R. F., Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature (London) 312: 649–653 (1984).CrossRefGoogle Scholar
  5. Castagna, M., Takai, Y., Kaibuchi, K., Sano, U., Kikkawa, U. and Nishizuka, Y., Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol diesters, J. Biol. Chem. 257: 7847–7851 (1982).Google Scholar
  6. De Graan, P. N. E., Van Hooff, C. O. M., Tilly, B. C., Oestreicher, A. B., Schotman, P. and Gispen, W. H., Phosphoprotein B-50 in nerve growth cones from fetal rat brain, Neurosci. Lett. 61: 235–241 (1985).CrossRefGoogle Scholar
  7. De Graan, P. N. E., Oestreicher, A. B., Schrama, L. H. and Gispen, W. H., Phosphoprotein B-50: localization and function, Prog. Brain. Res. 69: 37–50 (1986a).CrossRefGoogle Scholar
  8. De Graan, P. N. E., Schrama, L. H. and Gispen, W. H., Characterization of a 52 kDa phosphoprotein possibly related to long-term potentiation, in: “Proceedings VIIth International Neurobiological Symposium on Learning and Memory, Oct 28 — Nov 2 (1985), Magdeburg (GDR)”, Pergamon Press, Oxford, in press (1986b).Google Scholar
  9. DeRiemer, S. A., Strong, J. A., Albert, K., Greengard, P. and Kaczmarek, L. K., Phorbol ester and protein kinase C enhance calcium current in Aplysia neurones, Nature (London) 313: 313–316 (1985a).CrossRefGoogle Scholar
  10. DeRiemer, S. A., Greengard, P. and Kaczmarek, L. K., Calcium/phosphatidylserine/diacylglycerol-dependent protein phosphorylation in the Alplysia nervous system, J. Neurosci. 5: 2672–2676 (1985b).Google Scholar
  11. Di Virgilio, F., Pozzan, T., Wollheim, C. B., Vicentini, L. M. and Meldolesi, J., Tumor promoter phorbol myristate acetate inhibits Ca2+ influx through voltage-gated Ca2+ channels in two secretory cell lines, PC12 and RINm5F, J. Biol. Chem. 261: 32–35 (1986).Google Scholar
  12. Dunkley, P. R. and Robinson, P. J., Depolarization-dependent protein phosphorylation in synaptosomes: mechanisms and significance, Prog. Brain Res. 69: 273–294 (1986).CrossRefGoogle Scholar
  13. Eichberg, J., De Graan, P. N. E., Schrama, L. H. and Gispen, W. H., Dioctanoylglycerol and phorbol esters enhance phosphorylation of phosphoprotein B-50 in native synaptic plasma membranes, Biochem. Biophys. Res. Commun. 136: 1007–1012 (1986).CrossRefGoogle Scholar
  14. Farese, R. V., Rosic, N., Babischkin, J., Farese, M. G., Foster, R. and Davis, J. S., Dual activation of the inositol-trisphosphate-calcium and cyclic nucleotide intracellular signaling systems by adrenocorticotropin in rat adrenal cells, Biochem. Biophys. Res. Commun. 135: 742–748 (1986).CrossRefGoogle Scholar
  15. Gispen, W. H., Wiegant, V. M., Greven, H. M. and De Wied, D., The induction of excessive grooming behavior in the rat by intracerebroventricular application of peptides derived from ACTH: structure-activity studies, Life Sci. 17: 645–652 (1975).CrossRefGoogle Scholar
  16. Gispen, W. H., Zwiers, H., Wiegant, V. M., Schotman, P. and Wilson, J. E., The behaviorally active neuropeptide ACTH as neurohormone and neuromodulator: the role of cyclic nucleotides and membrane phosphoproteins, Adv. Exp. Med. Biol. 116: 199–224 (1979).Google Scholar
  17. Gispen, W. H. and Isaacson, R. L., ACTH-induced excessive grooming in the rat, Pharmacol. Ther. 12: 209–246 (1981).CrossRefGoogle Scholar
  18. Gispen, W. H., Van Dongen, C. J., De Graan, P. N. E., Oestreicher, A. B. and Zwiers, H., The role of phosphoprotein B-50 in phosphoinositide metabolism in brain synaptic plasma membranes, in: “Inositol and Phosphoinositides”, J. E. Bleasdale, G. Hauser, J. Eichberg, eds, Humana Press, Dallas (1985a).Google Scholar
  19. Gispen, W. H., Leunissen, J. L. M., Oestreicher, A. B., Verkleij, A. J. and Zwiers, H., Presynaptic localization of B-50 phosphoprotein: the ACTH-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism, Brain Res. 328: 381–385 (1985b).CrossRefGoogle Scholar
  20. Gispen, W. H., Schrama, L. H. and Eichberg, J., Stimulation of protein kinase C reduces ACTH-induced excessive grooming, Eur. J. Pharmacol. 114: 399–400 (1985c).CrossRefGoogle Scholar
  21. Gispen, W. H., De Graan, P. N. E., Chan, S. Y. and Routtenberg, A., Comparison between the neural acidic proteins B-50 and F1, Prog. Brain Res. 69: in press (1986).Google Scholar
  22. Glassman, E., Gispen, W. H., Perumal, R., Machlus, B. and Wilson, J. E., The effect of short experiences on the incorporation of radioactive phosphate into synaptosomal and non-histone acid-extractable nuclear proteins from rat and mouse brain, in: “Proceedings 5th International Congress Pharmacology”, San Francisco, Vol. 4 (1973).Google Scholar
  23. Gower, H. and Rodnight, R., Intrinsic protein phosphorylation in synaptic plasma membrane fragments from the rat. General characteristics and migration behavior on Polyacrylamide gels of the main phosphate receptors, Biochim. Biophys. Acta 716: 45–52 (1982).CrossRefGoogle Scholar
  24. Gower, H., Rodnight, R. and Branimer, M. J., Ca2+-sensitivity of Ca2+-dependent protein kinase activities toward intrinsic proteins in synaptosomal membrane fragments from rat cerebral tissue, J. Neurochem. 46: 440–447 (1986).CrossRefGoogle Scholar
  25. Greven, H. M. and De Wied, D., The influence of peptides derived from corticotropin (ACTH) on performance. Structure-activity studies. Prog. Brain Res. 39: 429–442 (1973).CrossRefGoogle Scholar
  26. Isaacson, R. L., Hannigan, J. H., Brakkee, J. H. and Gispen, W. H., The time course of excessive grooming after neuropeptide administration, Brain. Res. Bull. 11: 289–293 (1983).CrossRefGoogle Scholar
  27. Jolles, J., Zwiers, H., Van Dongen, C. J., Schotman, P., Wirtz, K. W. A. and Gispen, W. H., Modulation of brain polyphosphoinositide metabolism by ACTH-sensitive protein phosphorylation, Nature 286: 623–625 (1980).CrossRefGoogle Scholar
  28. Jolles, J., Zwiers, H., Dekker, A., Wirtz, K. W. A. and Gispen, W. H., Corticotropin-(1-24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain, Biochem. J. 194: 283–291 (1981).Google Scholar
  29. Jork, R., De Graan, P. N. E., Van Dongen, C. J., Zwiers, H., Matthies, H. and Gispen, W. H., Dopamine-induced changes in protein phosphorylation and polyphosphoinositide metabolism in rat hippocampus, Brain Res. 291: 73–81 (1984).CrossRefGoogle Scholar
  30. Katz, F., Ellis, L. and Pfenninger, K. H., Nerve growth cones isolated from fetal rat brain, J. Neurosci. 5: 1402–1411 (1985).Google Scholar
  31. Kikkawa, U., Takai, Y., Tanaka, R., Miyake, R. and Nishizuka, Y., Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters, J. Biol. Chem. 258: 11442–11445 (1983).Google Scholar
  32. Kikkawa, U., Kitano, T., Saito, N., Fujiwara, H., Nakanishi, H., Kishimoto, A., Taniyama, K., Tanaka, C. and Nishizuka, Y., Possible roles of protein kinase C in signal transduction in nervous tissues, Prog. Brain Res. 69: 29–38 (1986).CrossRefGoogle Scholar
  33. Kristjansson, G. I., Zwiers, H., Oestreicher, A. B. and Gispen, W. H., Evidence that the synaptic phosphoprotein B-50 is localized exclusively in nerve tissue, J. Neurochem. 39: 371–378 (1982).CrossRefGoogle Scholar
  34. Labarca, R., Janowsky, A., Patel, J. and Paul, S. M., Phorbol esters inhibit agonist induced 3H-inositol-l-phosphate accumulation in rat hippocampal slices, Biochem. Biophys. Res. Commun. 123: 703–709 (1984).CrossRefGoogle Scholar
  35. Leeb-Lundberg, L. M. F., Cotecchia, S., Lomasney, J. W., DeBernardis, J. F., Lefkowitz, R. J., and Caron, M. G., 1985, Phorbol esters promote α-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism, Proc. Natl. Acad. Sci. USA 82: 5651–5655 (1985).CrossRefGoogle Scholar
  36. Mahler, H. R., Kleine, L. P., Ratner, N. and Sorensen, R. G., Identification and topography of synaptic phosphoproteins, Progr. Brain Res. 56: 27–48 (1982).CrossRefGoogle Scholar
  37. Niedel, J. E., Kuhn, L. J. and Vanderbark, G. R., Phorbol diester receptor copurifies with protein kinase C., Proc. Natl. Acad. Sci. USA 80: 36–40 (1983).CrossRefGoogle Scholar
  38. Nishizuka, Y., The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature (London) 308: 693–697 (1984).CrossRefGoogle Scholar
  39. Oestreicher, A. B., Zwiers, H., Schotman, P. and Gispen, W. H., Immunohistochemical localization of a phosphoprotein (B-50) isolated from rat brain synaptosomal plasma membranes, Brain Res. Bull. 6: 145–153 (1981).CrossRefGoogle Scholar
  40. Oestreicher, A. B., Van Dongen, A. B., Zwiers, H. and Gispen, W. H., Affinity-purified anti-B-50 protein antibody: interference with the function of the phosphoprotein B-50 in synaptic plasma membranes, J. Neurochem. 41: 331–340 (1983).CrossRefGoogle Scholar
  41. Oestreicher, A. B., Van Duin, M., Zwiers, H. and Gispen, W. H., Cross-reaction of anti-rat B-50: characterization and isolation of a ‘B-50-phosphoprotein’ from bovine brain, J. Neurochem. 43: 935–943 (1984).CrossRefGoogle Scholar
  42. Oestreicher, A. B., Dekker, L. V. and Gispen, W. H., A radioimmunoassay for the phosphoprotein B-50: distribution in rat brain, J. Neurochem. 46: 1366–1369 (1986).CrossRefGoogle Scholar
  43. Okano, Y., Takagi, H., Nakashima, S., Tohmatsu, T. and Nozawa, Y., Inhibitory action of phorbol myristate acetate on histamine secretion and polyphosphoinositide turnover induced by compound 48/80 in mast cells, Biochem. Biophys. Res. Commun. 132: 110–117 (1985).CrossRefGoogle Scholar
  44. Orella, S. A., Solski, P. A. and Brown, J. H., Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells, J. Biol. Chem. 260: 5236–5239 (1985).Google Scholar
  45. Rane, S. G. and Dunlap, K., Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons, Proc. Natl. Acad. Sci. USA 83: 184–188 (1986).CrossRefGoogle Scholar
  46. Rodnight, R., Aspects of protein phosphorylation in the nervous system with particular reference to synaptic transmission, Progr. Brain Res. 56: 1–25 (1982).CrossRefGoogle Scholar
  47. Routtenberg, A., Lovinger, D. M. and Steward, P., Selective increase in phosphorylation state of a 47 kDa protein (F1) directly related to longterm potentiation, Behav. Neural Biol. 43: 3–11 (1985).CrossRefGoogle Scholar
  48. Schrama, L. H., De Graan, P. N. E., Eichberg, J. and Gispen, W. H., Feedback control of the inositol phospholipid response in rat brain is sensitive to ACTH, Eur. J. Pharmacol. 121: 403–404 (1986a).CrossRefGoogle Scholar
  49. Schrama, L. H., De Graan, P. N. E., Wadman, W. J., Lopes da Silva, F. H. and Gispen, W. H., Long-term potentiation and 4-aminopyridine-induced changes in protein-and lipid-phosphorylation in the hippocampal slice, Prog. Brain Res. 69: in press (1986b).Google Scholar
  50. Sorensen, R. G., Kleine, L. P. and Mahler, H. R., Presynaptic localization of phosphoprotein B-50, Brain Res. Bull. 7: 57–61 (1981).CrossRefGoogle Scholar
  51. Spruijt, B. M., Cools, A. R. and Gispen, W. H., The periaqueductal gray: a prerequisite for ACTH-induced excessive grooming, Behav. Brain Res. in press (1986).Google Scholar
  52. Streb, H., Irvine, R. F., Berridge, M. J. and Schulz, I., Release of Ca2+ from a nonmitrochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature (London) 306: 67–69 (1983).CrossRefGoogle Scholar
  53. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T. and Nishizuka, Y., Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system, Biochem. Biophys. Res. Commun. 91: 1218–1224 (1979).CrossRefGoogle Scholar
  54. Takai, Y., Kaibuchi, K., Tsuda, T. and Hoshijima, M., Ro1e of protein kinase C in transmembrane signalling, J. Cell. Biochem. 29: 143–155 (1985).CrossRefGoogle Scholar
  55. Tohmatsu, T., Hattori, H., Nagao, S., Ohki, K. and Nozawa, Y., Reversal by protein kinase C inhibitor of suppressive actions of phorbol-12-myristate-13-acetate on polyphosphoinositide metabolism and cytosolic Ca2+ mobilization in trombin-stimulated human platelets, Biochem. Biophys. Res. Commun. 134: 868–875 (1986).CrossRefGoogle Scholar
  56. Van Dongen, C. J., Zwiers, H. and Gispen, W. H., Purification and partial characterization of the phosphatidylinositol 4-phosphate kinase from rat brain, Biochem. J. 223: 197–203 (1984).Google Scholar
  57. Van Dongen, C. J., Zwiers, H., De Graan, P. N. E. and Gispen, W. H., Modulation of the activity of purified phosphatidylinositol 4-phosphate kinase by phosphorylated and dephosphorylated B-50, Biochem. Biophys. Res. Commun. 128: 1219–1227 (1985).CrossRefGoogle Scholar
  58. Van Dongen, C. J., Kok, J. W., Schrama, L. H., Oestreicher, A. B. and Gispen, W. H., Immunochemical characterization of phosphatidylinositol 4-phosphate kinase from rat brain, Biochem. J. 233: 859–864 (1986).Google Scholar
  59. Vicentini, L. M., Di Virgilio, F., Ambrosini, A., Pozzan, T. and Meldolesi, J., Tumor promoter phorbol 12-myristate, 13-acetate inhibits phosphoinositide hydrolysis and cytosolic Ca2+ rise induced by the activation of muscarinic receptors in PC12 cells, Biochem. Biophys. Res. Commun. 127: 310–317 (1985).CrossRefGoogle Scholar
  60. Watson, S. J., Richard, C. W. III and Barchas, J. D., Adrenocorticotropin in rat brain: immunocytochemical localization in cells and axons, Science 275: 226–228 (1978).Google Scholar
  61. Watson, S. P. and Lapetina, E. G., 1,2-Diacylglycerol and phorbol ester inhibit agonist-induced formation of inositol phosphates in human platelets: possible implications for negative feedback regulation of inositol phospholipid hydrolysis, Proc. Natl. Acad. Sci. USA 82: 2623–2626 (1985).CrossRefGoogle Scholar
  62. Weller, M., “Protein phosphorylation. The Nature, Function and Metabolism of Proteins, which Contain Covalently Bound Phosphorus”, PION Ltd, London (1979).Google Scholar
  63. Worley, P. F., Barbaban, J. M. and Snyder, S. H., Heterogeneous localization of protein kinase C in rat brain: autoradiographic analysis of phorbol ester receptor binding, J. Neurosci. 6: 199–207 (1986).Google Scholar
  64. Zwiers, H., Veldhuis, H. D., Schotman, P. and Gispen, W. H., ACTH, cyclic nucleotides, and brain protein phosphorylation in vitro, Neurochem. Res. 1: 669–677 (1976).CrossRefGoogle Scholar
  65. Zwiers, H., Wiegant, V. M., Schotman, P. and Gispen, W. H., Intraventricular administered ACTH and changes in rat brain phosphorylation: a preliminary report, in: “Mechanism, Regulation and Special Functions of Protein Synthesis in the Brain”, S. Roberts, A. Lajhta, and W. H. Gispen, eds. Elsevier/North-Holland Biomedical Press, Amsterdam (1977).Google Scholar
  66. Zwiers, H., Wiegant, V. M., Schotman, P. and Gispen, W. H., ACTH-induced inhibition of endogenous rat brain protein phosphorylation in vitro: structure-activity, Neurochem. Res. 3: 247–256 (1978).CrossRefGoogle Scholar
  67. Zwiers, H., Tonnaer, J., Wiegant, V. M., Schotman, P. and Gispen, W. H., ACTH-sensitive protein kinase from rat brain membranes, J. Neurochem. 33: 247–256 (1979).CrossRefGoogle Scholar
  68. Zwiers, H., Schotman, P. and Gispen, W. H., Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membrane, J. Neurochem. 34: 1689–1699 (1980).CrossRefGoogle Scholar
  69. Zwiers, H., Jolles, J., Aloyo, V. J., Oestreicher, A. B. and Gispen, W. H., ACTH and synaptic membrane phosphorylation in rat brain, Prog. Brain Res. 56: 405–417 (1982).CrossRefGoogle Scholar
  70. Zwiers, H., Verhaagen, J., Van Dongen, C. J., De Graan, P. N. E. and Gispen, W. H., Resolution of rat brain synaptic phosphoprotein B-50 into multiple forms by two-dimensional electrophoresis: evidence for multisite phosphorylation, J. Neurochem. 44: 1083–1090 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Louise H. Schrama
    • 1
  • Pierre N. E. De Graan
    • 1
  • A. Beate Oestreicher
    • 1
  • Willem Hendrik Gispen
    • 1
  1. 1.Division of Molecular Neurobiology, Institute of Molecular Biology and Medical Biotechnology and Rudolf Magnus Institute for PharmacologyUniversity of UtrechtCH UtrechtThe Netherlands

Personalised recommendations