Chemoreception: Paramecium as a Receptor Cell

  • Judith Van Houten
  • Robin R. Preston
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


In the sensory modalities of taste, smell and common chemical sense, there are receptor cells that make contact with the external environment and detect the presence of external chemical stimuli. The receptor cell is the site of stimulus recognition, which is thought to be mediated through binding of the stimulus to specific surface receptors and then transduction of this binding into “useful” electrical information. Information in this new form is passed on to higher order neurons and eventually is translated into a response. In order to study receptor cell function, it seems straightforward to isolate these receptor cells, identify the receptors among the membrane proteins and determine the ionic basis of receptor binding by conventional electrophysiology. However, there are limitations inherent in many of the chemosensory systems traditionally used to study chemoreception. Relatively small amounts of olfactory or taste epithelium limit the binding studies and biochemical studies necessary to identify receptor proteins; tissue is often of a mixed cell type, even when avaiable in quantity, making it difficult to be sure of the origins of putative receptor proteins (Price, 1981; Mooser, 1981; Cagan, 1981). Hence, indirect methods (e.g. treating the tissue with n-ethyl-maleimide to disrupt protein sulfhydryl bonds, and hence disrupting the chemoresponse, or demonstrating specificity and saturability of a response) are used to demonstrate that the receptor site is a protein.


Ciliary Beat Frequency Inositol Triphosphate Olfactory Marker Protein Folate Binding Protein Chemoreceptor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berridge, M. J. and Irvine, R. F., Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315 (1984).CrossRefGoogle Scholar
  2. Bignetti, E., Cavaggioni, A., Pelosi, P., Persaud, K., Sorbi, R. and Tirindelli, R., Purification and characterization of an odorant-binding protein from cow nasal tissue, Eur. J. Biochem. 149: 227 (1985).CrossRefGoogle Scholar
  3. Cagan, R., Recognition of taste stimuli at the initial binding interaction, in: “Biochemistry of Taste and Olfaction,” R. Cagan and M. Kare, eds., Nutrition Foundation, Academic Press, NY (1981).Google Scholar
  4. DiNallo, M., Wohlford, M. and Van Houten, J., Mutants of Paramecium defective in chemokinesis to folate, Genetics 102: 149 (1982).Google Scholar
  5. Dunlap, K., Localization of calcium channels in Paramecium caudatum, J. Physiol. 271: 119 (1977).Google Scholar
  6. Eckert, R., Bioelectric control of cilia, Science 176: 473 (1972).CrossRefGoogle Scholar
  7. Gerisch, G., Chemotaxis in Dictyostelium, Ann. Rev. Physiol. 44: 535 (1982).CrossRefGoogle Scholar
  8. Gustin, M., Bonini, N. and Nelson, D., Membrane potential regulation of cAMP: control mechanism for swimming behavior in the ciliate Paramecium, Soc. Neurosci. Abstr. 9: 167 (1983).Google Scholar
  9. Hansen, K. and Wieczorek, H., Biochemical aspects of sugar reception in insects, in: “Biochemistry of Taste and Olfaction,” R. Cagan and M. Kare, eds., Nutrition Foundation, Academic Press, New York, (1981).Google Scholar
  10. Hazelbauer, G. and Harayama, S., Sensory transduction in bacterial Chemotaxis, Int. Rev. cytol. 81: 33 (1983).CrossRefGoogle Scholar
  11. Henderson, G. and Zevely, E., Affinity 1abeling of the 5-methyl-tetrahydrofolate/methotrexate transport of protein by L1210 cells by treatment with an N-hydroxysuccinimide ester of methotrexate, J. Biol. Chem. 259: 4558 (1984).Google Scholar
  12. Huang, B., Ramanis, Z. and Luck, D. J. L., Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function, Cell 28: 115 (1982).CrossRefGoogle Scholar
  13. Hennessey, T., Machemer, H. and Nelson, D., Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization, Eur. J. Cell. Biol. 36: 153 (1985).Google Scholar
  14. Hum, B. and Chantler, S. M., Production of reagent antibodies, Meth. Enz. 70: 104 (1980).CrossRefGoogle Scholar
  15. Kung, C. and Saimi, Y., The physiological basis of taxes in Paramecium, Ann. Rev. Physiol. 44: 519 (1982).CrossRefGoogle Scholar
  16. Lancet, D., Vertebrate olfactory reception, Ann. Rev Neurosci. 9: 329 (1986).CrossRefGoogle Scholar
  17. Langone, J., Radioimmunoassay of methotrexate, leucovorin, and 5-methyltetrahydrofolate, Meth. Enz. 84: 409 (1982).CrossRefGoogle Scholar
  18. Leick, V. and Hellung-Larsen, P., Chemotaxis in Tetrahymena: the involvement of peptides and other signal substances, J. Protozool. 32: 550 (1985).Google Scholar
  19. Levandowsky, M., Chang, T., Kehr, A, Kim, J., Gardner, L., Tsang, L., Lai, G., Chung, C. and Prakash, E., Chemosensory responses to amino acids and certain amines by the ciliate Tetrahymena: a flat capillary assay, Biol. Bull. 167: 322 (1984).CrossRefGoogle Scholar
  20. Machemer, H. and dePeyer, J., Swimming sensory cells: electrical membrane parameters, receptor properties and motor control in ciliated protozoa, Verh. Drsch. Zool. Ges. 1977: 86 (1977).Google Scholar
  21. Margolis, F. L., Sydor, W., Teitelbaum, Z., Blacher, R., Grillo, M., Rogers, K., Sun, R. and Gubler, U., Molecular biological approaches to the olfactory system: olfactory marker protein as a model, Chem. Senses 10: 163 (1985).CrossRefGoogle Scholar
  22. Naitoh, Y., Protozoa, in: “Electrical Conduction and Behavior in’ simple’ Invertebrates,” G. A. B. Shelton, ed., Clarendon Press, Oxford (1982).Google Scholar
  23. Nishizuka, Y., The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308: 693 (1984a).CrossRefGoogle Scholar
  24. Nishizuka, Y., Turnover of inositol phospholipids and signal transduction, Science 225: 1365 (1984b).CrossRefGoogle Scholar
  25. Ogura, A. and Machemer, H., Distribution of mechanoreceptor channels in the Paramecium surface membrane, J. Comp. Physiol. 135: 233 (1980).Google Scholar
  26. Price, S., Receptor proteins in vertebrate olfaction, in: “Biochemistry of Taste and Olfaction”, R. Cagan and M. Kare, eds., Academic Press, NY, (1981).Google Scholar
  27. Preston, R. R. and Van Houten, J. L., Localization of the chemoreceptive properties of the surface membrane of Paramecium tetraurelia, J. Comp. Physiol. in press (1986).Google Scholar
  28. Preston, R. R. and Van Houten, J. L., Chemoreception in Paramecium tetraurelia: folate and acetate-induced membrane hyperpolarization, J. Comp. Physiol. submitted (1986).Google Scholar
  29. Rink, T. and Pozzan, T., Using Quin2 in cell suspensions, Cell Calcium 6: 133 (1985).CrossRefGoogle Scholar
  30. Satow, Y. and Kung, C., Possible reduction of surface charge by a mutation in Paramecium tetraurelia, J. Membr. Biol. 59: 179 (1981).Google Scholar
  31. Schultz, J., Grünemund, R., von Hirschausen, R. and Schonfeld, U., Ionic regulation of cAMP levels in Paramecium tetraurelia, Febs. Lett. 167: 113 (1984).CrossRefGoogle Scholar
  32. Schulz, S., Denaro, M., Xypolyta-Bulloch, A. and Van Houten, J., Relationship of folate binding to chemoreception in Paramecium, J. Comp. Physiol. 155: 113 (1984).CrossRefGoogle Scholar
  33. Schulz, S., Sasner, J. M. and Van Houten, J., In search of the folate chemoreceptor, J. Cell Biol. 101: 302a (1985a).Google Scholar
  34. Schulz, S., Preston, R. and Van Houten, J., Characterization of putative Paramecium chemoreceptors, Chem. Senses 10: in press (1985b).Google Scholar
  35. Schulz, S., Sasner, J. M. and Van Houten, J., Folate binding proteins of the Paramecium surface membrane, Biochim. Biophys. Acta submitted (1986).Google Scholar
  36. Smith, R., Gagnon, M. L., Preston, R. R., Schulz, S. and Van Houten, J., Correlation between cAMP binding and chemoreception in Paramecium, J. Comp. Physiol. submitted (1986).Google Scholar
  37. Stryer, L., Cyclic GMP cascade of vision, Ann. Rev. Neurosci. 9: 87 (1986).CrossRefGoogle Scholar
  38. Towbin, H., Staehelin, T. and Gordon, J., Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. (USA) 76: 4350 (1979).Google Scholar
  39. Tsien, R., Pozzan, T. and Rink, T., Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator, J. Cell Biol. 94: 325 (1982).CrossRefGoogle Scholar
  40. Van Houten, J., A mutant of Paramecium defective in Chemotaxis, Science 198: 746 (1977).CrossRefGoogle Scholar
  41. Van Houten, J., Two mechanisms of Chemotaxis in Paramecium, J. Comp. Physiol. 127: 167 (1978).CrossRefGoogle Scholar
  42. Van Houten, J., Membrane potential changes during chemokinesis in Paramecium, Science 204: 1100 (1979).CrossRefGoogle Scholar
  43. Van Houten, J. and Preston, R. R., Effects of amiloride on Paramecium chemoresponse, Chem. Senses 10: in press (1985).Google Scholar
  44. Van Houten, J. and Van Houten, J., Computer analysis of Paramecium chemokinesis behavior, J. Theor. Biol. 98: 453 (1982).CrossRefGoogle Scholar
  45. Van Houten, J., Martel, E. and Kasch, T., Kinetic analysis of chemokinesis of Paramecium, J. Protozool. 29: 226 (1982).Google Scholar
  46. Van Houten, J., Schulz, S. and Denaro, M., Characterization and location of folate binding sites involved in Paramecium chemoreception, J. Cell Biol. 97: 469a (1983).Google Scholar
  47. Van Houten, J., Wymer, J., Cushman, M. and Preston, R. R., Effects of Sadenosyl-L-methionine on chemoreception in P. tetraurelia, J. Cell Biol. 99: 242a (1984).Google Scholar
  48. Van Houten, J., Smith, R., Wymer, J., Palmer, B. and Denaro, M., Fluorescein conjugated folate as an indicator of specific folate binding to Paramecium, J. Protozool. 32: 613 (1985).Google Scholar
  49. Van Houten, J., Preston, R. R., Schulz, S., Sasner, J. M. and Smith, R., Chemoreceptors of Paramecium, Soc. Neurosci. Abstr. 12: in press (1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Judith Van Houten
    • 1
  • Robin R. Preston
    • 1
  1. 1.Department of ZoologyUniversity of VermontBurlingtonUSA

Personalised recommendations