A Possible Second Messenger System for the Production of Long-Term Changes in Synapses

  • Michel Baudry
  • Peter Seubert
  • Gary Lynch
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


Interactions between neurons that leave physiological traces lasting more than a few milleseconds are typically explained by reference to a second messenger system. Candidates for second messengers in brain typically involve enzymes, most often protein kinases, and use activation sequences that vary considerably in complexity; for example, calcium/calmodulin activated kinases require only the presence of sufficient concentrations of calcium against an appropriate background while stimulation of the c-AMP dependent kinase is pictured as a series of steps that include protein translocation, activation of a cyclase, and so forth (Greengard, 1981). Recently a probable second messenger system of considerable complexity and involving a novel type of kinase has been identified (Berridge and Irvine, 1984). Activation of several types of transmitter and hormone receptors stimulates the turnover of membrane phosphatidylinositol (PI) with the formation of two breakdown products in the interior of the cell, one of which releases calcium from intracellular stores and a second that, together with calcium, causes the translocation and activation of protein kinase C. This system can be modulated at several stages, as indicated by the observation that certain membrane receptor classes suppress the activation by other receptors of PI turnover (Baudry et al., 1986). In this chapter we will review the hypothesis that a novel kind of second messenger system is found in brain that, when activated, causes irreversible changes in the fundamental structures and functions of the neuronal cytoskeleton.


Calpain Activation Messenger System Membrane Skeleton Synaptic Potentiation Brain Spectrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akers, R. F., Lovinger, D. M., Colley, P. A., Linden, D. J. and Routtenberg, A., Translocation of protein kinase C activity may mediate hippocampal long-term potentiation, Science 231:587–589 (1986).CrossRefGoogle Scholar
  2. Alkon, D., Calcium-mediated reduction of ionic currents: a biophysical memory trace, Science 226:1037–1045 (1984).CrossRefGoogle Scholar
  3. Andersen, P., Silfvenius, H., Sundberg, S. H. and Sveen, O., A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea-pig hippocampal slices in vitro, J. Physiol. 307:273–299 (1980).Google Scholar
  4. Baines, A. J. and Bennett, V., Synapsin I is a spectrin-binding protein immunologically related to erythrocyte protein 4.1. Nature 315:410–413 (1985).CrossRefGoogle Scholar
  5. Baldassare, J. J., Bakshian, S., Knipp, M. A. and Fisher, G. J., Inhibition of fibrinogen receptor expression and serotonin release by leupeptin and antipain, J. Biol. Chem. 260:10531–10535 (1985).Google Scholar
  6. Baudry, M. and Lynch, G., Regulation of glutamate receptors by cations, Nature 282:748–750 (1979).CrossRefGoogle Scholar
  7. Baudry, M. and Lynch, G., Regulation of hippocampal glutamate receptors: evidence for the ivolvement of a calcium-activated protease, Proc. Nat. Acad. Sci. USA 77:2298–2302 (1980).CrossRefGoogle Scholar
  8. Baudry, M., Bundman, M., Smith, E. and Lynch, G., Micromolar calcium stimulates proteolysis and glutamate binding in rat brain synaptic membranes, Science 212:937–938 (1981a).CrossRefGoogle Scholar
  9. Baudry, M., Evans, J. and Lynch, G., Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus, Nature 319:329–331 (1986).CrossRefGoogle Scholar
  10. Baudry, M., Gall, C., Kessler, M., Alapour, H. and Lynch, G., Denervation-induced decrease in mitochondrial calcium transport in rat hippocampus, J. Neurosci. 3:252–259 (1983).Google Scholar
  11. Baudry, M., Lynch, G. and Gall, C., Induction of ornithine decarboxylase as a possible mediator of seizure-elicited changes in genomic expression in rat hippocampus, J. Neurosci. (in press) (1986).Google Scholar
  12. Baudry, M., Simonson, L., DuBrin, R. and Lynch, G., A comparative study of soluble calcium-dependent proteolytic activity in vertebrate brain, J. Neurobiol. 17:15–28 (1986).CrossRefGoogle Scholar
  13. Bennett, V., The membrane skeleton of human erythrocytes and its implication for more complex cells, Ann. Rev. Biochem. 54:272–304 (1985).CrossRefGoogle Scholar
  14. Bennett, V. and Davis, J., Erythrocyte ankyrin: immunoreactive analogues are associated with mitrotic structures in cultured cells and with microtubules in brain, Proc. Nat. Acad. Sci. USA 78:7550–7554 (1981).CrossRefGoogle Scholar
  15. Bennett, V. and Stenbuck, P. J., The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes, Nature 280:468–473 (1979).CrossRefGoogle Scholar
  16. Bennett, V., Davis, J. and Fowler, W. E., Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin, Nature 299:126–131 (1982).CrossRefGoogle Scholar
  17. Berridge, M. J. and Irvine, R. F., Inositol Triphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321 (1984).CrossRefGoogle Scholar
  18. Bland, B. H., The physiology and pharmacology of hippocampal formation theta rhythms, Prog. in Neurobiol. 26:1–54 (1986).CrossRefGoogle Scholar
  19. Bodsch, W., Baudry, M. and Lynch, G., Activity-dependent breakdown of in vivo assembled spectrin in the neuronal cytoskeleton. (submitted for publication) (1986a).Google Scholar
  20. Bodsch, W., Baudry, M. and Lynch, G., In vivo turnover of brain spectrin: stimulation of degradation by depolarization, Abst. Society for Neuro-sci, (in press) (1986b).Google Scholar
  21. Branton, D., Cohen, C. M. and Tyler, J., Interaction of cytoskeleton proteins on the human erythrocyte membrane, Cell 24:24–32 (1981).CrossRefGoogle Scholar
  22. Browning, M., Baudry, M., Bennett, W. and Lynch, G., Phosphorylation-mediated changes in pyruvate dehydrogenase activity influence pyruvate-supported calcium accumulation by brain mitochondria, J. Neurochem. 36:1932–1940 (1981a).CrossRefGoogle Scholar
  23. Browning, M., Bennett, W., Kelly, P. and Lynch, G., The 40,000 Mr brain phosphoprotein influenced by high frequency synaptic stimulation is the alpha subunit of pyruvate dehydrogenase, Brain Res. 218:255–266 (1981b).CrossRefGoogle Scholar
  24. Burns, N. R., Ohanian, V. and Gratzer, W. B., Properties of brain spectrin (fodrin), FEBS Lett. 153:165–168 (1983).CrossRefGoogle Scholar
  25. Burridge, K., Kelly, T. and Mangeat, P., Nonerythrocyte spectrins actin-membrane attachment proteins occurring in many cell types, J. Cell Biol. 95:478–486 (1982).CrossRefGoogle Scholar
  26. Calvert, R., Bennett, P. and Gratzer, W. B., Properties and structural roles of the subunits of human spectrin, Eur. J. Biochem. 107:355–361 (1980).CrossRefGoogle Scholar
  27. Canellakis, E. S., Viceps-Madore, D., Kyriakidis, D. A. and Heller, J. S., The regulation and function of ornithine decarboxylase and of the poly-amines, Curr. Top. Cell. Regul. 15:155–202 (1979).Google Scholar
  28. Carlin, R. K., Bartelt, D. C. and Siekevitz, P., Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations, J. Cell Biol. 96:443–448 (1983).CrossRefGoogle Scholar
  29. Chang, F. L. F. and Greenough, W. T., Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippo-campal slice, Brain Res. 309:35–46 (1984).CrossRefGoogle Scholar
  30. Cohen, C. M., Tyler, J. M. and Branton, D., Spectrin-actin associations studied by electron microscopy of shadowed preparations, Cell 21:875–883 (1980).CrossRefGoogle Scholar
  31. Cohen, R. S., Blomberg, F., Berins, K. and Siekevitz, P., The structure of postsynpatic densities isolated from dog cerebral cortex, J. Cell Biol. 74:181–191 (1977).CrossRefGoogle Scholar
  32. Collinridge, G. L., Kehl, S. J. and McLennan, H., Excitatory amino acids in synaptic transmission in the Schaffer-collateral-commissural pathway of the rat hippocampus, J. Physiol. 334:33–46 (1983).Google Scholar
  33. Davies, P. J. A. and Klee, C. B., Calmodulin-binding proteins: a high molecular weight calmodulin-binding protein from bovine brain, Biochem. Int. 3:203–212 (1981).Google Scholar
  34. Davis, J. and Bennett, V., Brain Spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits, J. Biol. Chem. 258:7757–7766 (1983).Google Scholar
  35. Davis, J. Q. and Bennett, V., Brain Ankyrin: purification of a 72,000 Mr spectrin-binding domain, J. Biol. Chem. 259:1874–1881 (1984).Google Scholar
  36. Davis, J. Q. and Bennett, V., Brain Ankyrin: a membrane-associated protein with binding sites for spectrin, tubulin and the cytoplasmic domain of the erythrocyte anion channel, J. Biol. Chem. 259:13550–13559 (1984).Google Scholar
  37. DeMartino, G. N. and Blumenthal, D. K., Identification and partial purification of a factor that stimulates calcium-dependent proteases, Biochemistry 21:4297–4303 (1982).CrossRefGoogle Scholar
  38. Dunlop, D. S., Van Eiden, W. and Lajtha, A., Protein degradation rates in regions of the nervous system, Biochem. J. 170:637–642 (1978).Google Scholar
  39. Edelman, G. M., Surface modulation in cell recognition and cell growth, Science 192:218–226 (1976).CrossRefGoogle Scholar
  40. Feldman, J. A., A connectionist model of visual memory. In: “Parallel Models of Associative Memory” (G. E. Hinton and J. A. Anderson, Eds.) Lawrence Erlbaum (Hillsdale, NJ) pp 49–82 (1981).Google Scholar
  41. Fifkova, E., Markham, J. A. and Delay, R. J., Calcium in the spine apparatus of dendritic spines in the dentate molecular layer, Brain Res. 266: 163–168 (1983).CrossRefGoogle Scholar
  42. Fox, J. E. B. and Phillips, D. R., Stimulus-induced activation of the calcium-dependent protease within platelets, Cell Motility 3:579–588 (1983).CrossRefGoogle Scholar
  43. Gall, C., Brecha, N., Chang, T. and Karten, H., Localization of enkephalins in rat hippocampus, J. Comp. Neurol. 198:335–350 (1981).CrossRefGoogle Scholar
  44. Gall, G., Pico, R. and Lauterborn, J., Focal hippocampal lesions induce seizures and long-lasting changes in mossy fiver enkephalin and CCK immu-noreactivity, Peptides (in press) (1986).Google Scholar
  45. Glenney, J. R. Jr and Glenney, P., Comparison of spectrin isolated from erythrocyte and non-erythrocyte cells, Europ. J. Biochem. 144:529–539 (1984).CrossRefGoogle Scholar
  46. Glenney, J. R., Glenney, P. and Weber, K., F-actin binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule, J. Biol. Chem. 257:9781–9787 (1982).Google Scholar
  47. Goodman, S. R. and Zagon, I. S., Brain spectrin: a review, Brain Res. Bull. 13, 813, 832 (1985).CrossRefGoogle Scholar
  48. Greengard, P., Intracellular signals in the brain, Harvey Lect. 75:277–331 (1981).Google Scholar
  49. Hanbauer, I., Gimble, J. and Lovenberg, W., Changes in soluble calmodulin following activation of dopamine receptors in rat striatal slices, Neuropharm. 18:851–857 (1979).CrossRefGoogle Scholar
  50. Harris, A. S., Anderson, J. P., Yurchenco, P. D., Green, L. A. D., Ainger, V. J. and Morrow, J. S., Mechanisms of cytoskeletal regulation: functional and ontogenic diversity in human erythrocyte and brain beta spectrin, J. Cell Biochem. 30:51–69 (1986).CrossRefGoogle Scholar
  51. Harris, E. W., Ganong, A. H. and Cotman, C. W., Long-term potentiation in the hippocampus involves activation of N-Methyl-D-aspartate receptors, Brain Res. 323:132–137 (1984).CrossRefGoogle Scholar
  52. Hebb, D. O., The organization of behavior. Wiley (New York) (1949).Google Scholar
  53. Huganir, R. L. and Greengard, P., CAMP-dependent protein kinase phosphory-lates the nicotinic acetylcholine receptor, Proc. Nat. Acad. Sci. 80: 1130–1134 (1983).CrossRefGoogle Scholar
  54. Ingebritsen, T. S. and Cohen, P., Protein phosphatase: properties and role in cellular regulation, Science 221:331–338 (1983).CrossRefGoogle Scholar
  55. Ishikawa, M., Murofushi, H. and Sakai, H., Bundling of microtubules in vitro by fodrin, J. Biochem. 94:1209–1217 (1983).Google Scholar
  56. Jennings, L. K., Fox, J. E. B., Edwards, H. H. and Phillips, D. R., Changes in the cytoskeletal structure of human platelets following thrombin activation, J. Biol. Chem. 256:6927–6932 (1981).Google Scholar
  57. Kandel, E. R. and Schwartz, J. H., Molecular biology of learning: modulation of transmitter release, Science 218:433–443 (1982).CrossRefGoogle Scholar
  58. Kessler, M., Petersen, G., Vu, H. M., Baudry, M. and Lynch, G., Phe-Glu stimulated, chloride-dependent glutamate “binding” represents glutamate sequestration mediated by an exchange system (submitted for publication) (1986).Google Scholar
  59. Kirino, T. and Sano, K., Changes in the contralateral dentate gyrus in mongolian gerbils subjected to unilateral cerebral ischema, Acta Neuro-pathol. 50:121–128 (1980).CrossRefGoogle Scholar
  60. Kishimoto, A., Kajikawa, N., Tabuchi, H., Shiota, M. and Nishizuka, Y., Calcium-dependent neutral proteases, widespread occurrence of a species of protease active at lower concentrations of calcium, J. Biochem. 90: 884–892 (1981).Google Scholar
  61. Kitahara, A., Sasaki, T., Kikuchi, T., Yumoto, N., Hatanaka, M., Yoshimura, N. and Murachi, T., Large-scale purification of porcine calpain I and calpain II and comparison of proteolytic fragments of their subunits, J. Biochem. 95:1759–1766 (1984).Google Scholar
  62. Koch, C. and Poggio, T., A theoretical analysis of electrical properties of spines, Proc. Roy. Soc. Lond. (B) 218:455–477 (1983).CrossRefGoogle Scholar
  63. Larson, J. and Lynch, G., Synaptic potentiation in hippocampus by patterned stimulation involves two events, Science 232:985–988 (1986).CrossRefGoogle Scholar
  64. Larson, J., Wong, D. and Lynch, G., Patterned stimulation at the theta frequency is optimal for induction of long-term potentiation, Brain Res. 368:347–350 (1986).CrossRefGoogle Scholar
  65. Lee, K., Schottler, F., Oliver, M. and Lynch, G., Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus, J. Neurophysiol. 44:247–258 (1980).Google Scholar
  66. Levine, J. and Willard, M., Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells, J. Cell. Biol. 90:631–643 (1981).CrossRefGoogle Scholar
  67. Lewis, M. E., Laksmanan, J., Nagaiah, K., MacDonnell, P. C. and Guroff, G., Nerve growth factor increases activity of ornithine decarboxylase in rat brain, Proc. Natl. Acad. Sci. (U.S.A.) 75:1021–1023 (1978).CrossRefGoogle Scholar
  68. Libby, P. and Goldberg, A. L., Leupeptin, a protease inhibitor, decreases protein degradations in normal and diseased muscles, Science 199:534–536 (1978).CrossRefGoogle Scholar
  69. Lin, D. C., Flanagan, M. D. and Lin, S., Complexes containing actin and spectrin from erythrocyte and brain, Cell Motility 3:375–382 (1983).CrossRefGoogle Scholar
  70. Linn, T., Pettit, F. and Reed, L., Alpha-keto acid and dehydrogenase complexes. Regulation of the activity of the pyruvate dehydrogenase complex from bed kidney mitochondria by phosphorylation and dephosphory-lation, Proc. Nat. Acad. Sci. U.S.A. 62:234–241 (1969).CrossRefGoogle Scholar
  71. Llinas, R., McGuinness, T. L., Leonard, C. S., Sugimori, M. and Greengard, P., Intraterminal injection of synapsin I or calcium/calmodulin-depen-dent protein kinase II alters neurotransmitter release at the squid giant synapse, Proc. Nat. Acad. Sci. 82:3025–3039 (1985).CrossRefGoogle Scholar
  72. Lu, P. W., Soong, C. J. and Tao, M., Phosphorylation of ankyrin decreases its affinity for spectrin tetramer, J. Biol. Chem. 260:14958–14964 (1985).Google Scholar
  73. Lynch, G. and Baudry, M., Origins and manifestations of neuronal plasticity in the hippocampus. In Clinical Neurosciences (W. Willis, Ed.) Churchill-Livingstone Publishers, pp. 171–202 (1983).Google Scholar
  74. Lynch, G., Halpain, S. and Baudry, M., Effects of high frequency synaptic stimulation on glutamate receptor binding studied with a modified in vitro hippocampus slice preparation, Brain Res. 244:101–111 (1982).CrossRefGoogle Scholar
  75. Lynch, G., Larson, J. and Baudry, M., Proteases, Neural Stability and Brain Aging: An Hypothesis. In Treatment Development Strategies for Alzheimer’s Disease (T. Crook, R. Bartus, S. Ferris, and S. Gershan, Eds.) Mark Powley Assoc (Madison) (in press) (1986).Google Scholar
  76. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. and Schottler, F., Intracellular injections of EGTA block the induction of hippocampal long-term potentiation, Nature 305:719–721 (1983).CrossRefGoogle Scholar
  77. Malenka, R. C., Madison, D. V., Andrade, R. and Nicoll, R. A., Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons, J. Neurosci. 6:475–480 (1986).Google Scholar
  78. Malik, M. N., Meyers, L. A., Iqbal, K., Sheikh, A. M., Scotto, L. and Wis-niewski, H. M., Calcium activated proteolysis of fibrous proteins in central nervous system, Life Sci. 19:795–802 (1981).CrossRefGoogle Scholar
  79. Margolis, R. L. and Wilson, L., Opposite end assembly and disassembly of microtubules at steady state in vitro, Cell 13:1–8 (1978).CrossRefGoogle Scholar
  80. Mayer, M. L., Westbrook, G. L. and Guthrie, P. B., Voltage-dependent block by Mg2+ of NMDA responses in spinal and neurons, Nature 309:261–367 (1984).CrossRefGoogle Scholar
  81. Mellgren, R. L., Canine cardiac calcium-dependent proteases: resolution of two forms with different requirements for calcium, FEBS Lett. 109:129–133 (1980).CrossRefGoogle Scholar
  82. Murachi, T., Hatanaka, M., Yasumoto, Y., Nakayama, N. and Tanaka, K., A quantitative distribution study on calpain and calpastatin in rat tissues and cells, Biochem. Internat. 2:651–656 (1981).Google Scholar
  83. Nestler, E. J., Walaas, S. I. and Greengard, P., Neuronal phosphoproteins, physiological and clinical implications, Science 225:1357–1364 (1984).CrossRefGoogle Scholar
  84. Nicolson, G. L., Topographic display of cell surface components and their role in transmembrane signaling, Curr. Top. Dev. Biol. 13:305–338 (1979).CrossRefGoogle Scholar
  85. Nishida, E., Kotani, S., Kuwaki, T. and Sakai, H., Phosphorylation of micro-tubule-associated proteins (MAPs) controls both microtubule assembly and MAPs-actin interaction. In Biological Functions of Microtubules and Related Structures (H. Sakai, H. Mohri, and G. Borisy, Eds.). Academic Press (Toyko, New York) pp 285–295 (1982).Google Scholar
  86. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. and Prochiantz, A., Magnesium gates glutamate-activated channels in mouse central neurons, Nature 307:462–465 (1984).CrossRefGoogle Scholar
  87. Pin, J. P., Bockaert, J. and Recasens, M., The Ca2 /C1-dependent L-3H-gluta-mate binding: a new receptor or a particular transport process? FEBS Lett. 175:31–36 (1984).CrossRefGoogle Scholar
  88. Perlmutter, L. S., Gall, C., Siman, R. and Lynch, G., Ultrastructural localization of a calcium-activated protease (calpain) in rat CNS: association with microtubules, mitochondria and synaptic elements, Abst. Soc. for Neurosci. 11:267 (1985).Google Scholar
  89. Pontremoli, S., Salamino, F., Sparatore, B., Michetti, M., Sacco, O. and Melloni, E., Following association to the membrane, human erythrocyte pro-calpain is converted and released as fully activated calpain, Biochem. Biophys. Acta. 831:335–339 (1985).CrossRefGoogle Scholar
  90. Rasmussen, H. and Barrett, P. O., Calcium messenger system: an integrated view, Physiol. Rev. 64:938–984 (1984).Google Scholar
  91. Robinson, H. and Koch, C., An information storage mechanism: calcium and spines, Artificial Intelligence Memo 779 (CBID Paper 004) MIT press (Cambridge) pp 1–14 (1984).Google Scholar
  92. Routtenberg, A., Lovinger, D. and Steward, O., Selective increase in phosphorylation of a 47-kDa protein (F-1) directly related to long-term potentiation, Behav. and Neural Biol. 43:1–9 (1985).CrossRefGoogle Scholar
  93. Sandoval, I. V. and Weber, K., Calcium-induced inactivation of microtubule formation in brain extracts, Eur. J. Biochem. 92:463–470 (1978).CrossRefGoogle Scholar
  94. Sattilaro, R. F. and Dentier, W. L., The associaton of MAP-2 with microtubules, actin filaments, and coated vesicles. In Biological Functions of Microtubulin and Related Structures (H. Sakai, H. Mohri and G. Borisy, Eds.) Academic Press (Tokyo, New York) pp 297–309 (1982).Google Scholar
  95. Seals, J. R. and Czech, M. P., Evidence that insulin activates an intrinsic plasma membrane protease in generating a secondary chemical mediator, J. Biol. Chem. 255:6529–6531 (1980).Google Scholar
  96. Seals, J. R. and Czech, M. P., Characterization of a pyruvate dehydrogenase activator released by adipocyte plasma membranes in response to insulin, J. Biol. Chem. 256:2894–2899 (1981).Google Scholar
  97. Seubert, P., Baudry, M. Dudek, S. and Lynch, G., Calmodulin stimulates the degradation of brain spectrin by calpain, Synapse (in press) (1986).Google Scholar
  98. Siman, R., Baudry, M. and Lynch, G., Brain fodrin: substrate for the endogenous calcium-activated protease calpain I. Proc. Nat. Acad. Sci. (USA) 81:3276–3280 (1984).CrossRefGoogle Scholar
  99. Siman, R., Baudry, M. and Lynch, G., Glutamate receptor regulation by proteolysis of the cytoskeletal protein fodrin, Nature 315:225–227 (1985).CrossRefGoogle Scholar
  100. Siman, R., Baudry, M., and Lynch, G., Calcium-activated proteases as possible mediators of synaptic plasticity. In New Insights into Synaptic Function (G. Edelman, W. M. Cowan and W. Gall, Eds.) John Wiley, New York (in press) (1985).Google Scholar
  101. Simonson, L., Baudry, M., Siman, R. and Lynch, G., Regional distribution of soluble calcium-activated proteinase activity in neonatal and adult rat brain, Brain Res. 327:153–159 (1985).CrossRefGoogle Scholar
  102. Singer, S. J., The molecular organization of membranes, Ann Rev. Biochem. 43:805–833 (1974).CrossRefGoogle Scholar
  103. Sobue, K., Kanda, K., Invi, M., Morimoto, K. and Kakiuchi, S., Actin polymerization induced by calspectin, a calmodulin-binding spectrin-like protein, FEBS Lett. 148:221–225 (1982).CrossRefGoogle Scholar
  104. Speicher, D. W. and Marchesi, V. T., Erythrocyte spectrin is comprised of many homologous triple helical segments, Nature 311:177–180 (1984).CrossRefGoogle Scholar
  105. Staubli, U., Baudry, M. and Lynch, G., Olfactory discrimination learning is blocked by leupeptin, a thiol-proteinase inhibitor, Brain Res. 337:333–336 (1985).CrossRefGoogle Scholar
  106. Staubli, U., Baudry, M. and Lynch, G., Leupeptin, a thiol-proteinase inhibitor, causes a selective impairment of spatial maze performance in rats, Behav. and Neural Biol. 40:58–69 (1984).CrossRefGoogle Scholar
  107. Storm-Mathisen, J., Localization of transmitter candidates in the brain: The hippocampal formation as a model, Prog. Neurobiol. 8:119–181 (1977).CrossRefGoogle Scholar
  108. Swanson, L. W., Teyler, T. J. and Thompson, R. F., Hippocampal long-term potentiation: mechanisms and implications for memory, Neurosci. Res. Prog. Bull. 20, No. 5 (1982).Google Scholar
  109. Takeyama, Y., Nakanishi, H., Uratsuji, Y., Kishimoto, A. and Nishizuka, Y., A calcium-protease activator associated with brain microsomal-insoluble elements, FEBS Lett. 194:110–114 (1986).CrossRefGoogle Scholar
  110. Teyler, T. J. and Discenna, P., Long-term potentiation as a candidate mnemonic device, Brain Res. Rev. 7:15–28 (1984).CrossRefGoogle Scholar
  111. Tsukita, S., Ishikawa, H., Kurokana, M., Morimoto, K., Sobue, K. and Kakiuchi, S., Binding sites of calmodulin and actin on the brain spectrin, calspectrin, J. Cell. Biol. 97:574–578 (1983).CrossRefGoogle Scholar
  112. Tsuyama, S., Bramblett, G. T., Huang, K. P. and Flavin, M., Calcium/phospho-lipid-dependent kinase recognized sites in microtubule-associated protein 2 which are phosphoryalted in living brain and are not accessible to other kinases, J. Biol. Chem. 261:4110–4116 (1986).Google Scholar
  113. Vanderwolf, C. H., Kramis, R., Gillespie, L. A. and Bland, B. H., Hippocampal rhythmical slow activity and neocortical low voltage fast activity: relations to behavior. In The Hippocampus, Vol 2., Neurophysiology and Behavior (R. L. Isaacson and K. H. Pribram, Eds.) Plenum, New York pp 101–128 (1975).Google Scholar
  114. Weeds, A., Actin-binding proteins — regulators of cell architecture and motility, Nature 296:811–816 (1982).CrossRefGoogle Scholar
  115. Weisenberg, R. C., Microtubule formation in vitro in solutions containing low calcium concentrations, Science 177:1104–1105 (1972).CrossRefGoogle Scholar
  116. Wenzel, J. and Matthies, H., Morphological changes in the hippocampal formation accompanying memory formation and long-term potentiation. In Memory Systems of the Brain (N. Weinberger, J. McGaugh and G. Lynch, Eds.) The Guilford Press, New York, pp 150–170 (1985).Google Scholar
  117. Wheelock, M. J., Evidence for two structurally different forms of skeletal muscle C2+-activated protease, J. Biol. Chem. 257:12471–12474 (1982).Google Scholar
  118. White, J. D., Gall, C. M. and McKelvy, J. F., Enkephalin biosynthesis and enkephalin gene expression are increased in hippocampal mossy fibers following a seizure-producing lesion (submitted for publication) (1986).Google Scholar
  119. Woods, C. M. and Lazarides, E., Spectrin assembly in avian erythroid development is determined by competing reactions of subunit homo-and hetero-oligomerizatin, Nature 321:85–89 (1986).CrossRefGoogle Scholar
  120. Yoshimura, N., Kikuchi, T., Sasaki, T., Kitahara, A., Hatanaka, M. and Murachi, T., Two distinct Ca2+-proteases (calpain I and calpain II) purified concurrently by the same method from rat kidney, J. Biol. Chem. 258:8883–8889 (1983).Google Scholar
  121. Yoshino, H. and Marchesi, V. T., Isolations of spectrin subunits and reas-sociation in vitro: analysis by fluorescence polarization, J. Biol. Chem. 259:4496–4500 (1984).Google Scholar
  122. Yu, J., Fischman, D. A. and Steck, T. L., Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents, J. Supramol. Struct. 1:233–248 (1973).CrossRefGoogle Scholar
  123. Zagon, I. S., McLaughlin, P. J. and Goodman, S. R., Localization of spectrin in mammalian brain, J. Neurosci. 4:3089–3100 (1984).Google Scholar
  124. Zimmerman, V. J. P. and Schlaepfer, W. W., Characterization of a brain calcium-activated protease that degrades neurofilament proteins, Biochemistry 21:3977–3983 (1982).CrossRefGoogle Scholar
  125. Zimmerman, V. J. P. and Schlaepfer, W. W., Calcium-activated neutral protease (CANP) in brain and other tissues, Progress in Neurobiol. 23:63–78 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Michel Baudry
    • 1
  • Peter Seubert
    • 1
  • Gary Lynch
    • 1
  1. 1.Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineUSA

Personalised recommendations