Advertisement

Temporal and Spatial Events in the Calcium Messenger System

  • Howard Rasmussen
  • Paula Barrett
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)

Abstract

The great complexity of the central nervous system makes it a difficult object of biochemical study. Yet, some of the most important biochemical discoveries having implications for the field of cell regulation have been made in CNS tissue. A case in point is the discovery by Nishizuka and coworkers of a new kind of protein kinase, the so-called phospholipid-dependent, calcium-activated protein kinase or C-kinase, in brain tissue (Takai et al.). This kinase was found to be distinct from either the classic cAMPdependent or Ca++-CaM-dependent protein kinases. It was, however, found to be activated by Ca++, phospholipids, and diacylglycerols (Takai et al., 1977; Kishimoto et al., 1980). After its discovery in the brain, where it exists in very large amounts, it was found to be widely distributed in animal tissues (Nishizuka and Takai, 1981). Its discovery coincided in time with a significant breakthrough in our understanding of the role of inositol polyphosphatase in the transducing events which occur in the calcium messenger system (Michell, 1975; Berridge, 1984) (see chapters by Agranoff and by Lapetina in this volume).

Keywords

Pituitary Cell Influx Rate Adrenal Cell Messenger System Aldosterone Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelstein, R. S. and Eisenberg, E., Regulation and kinetics of the actin-myosin-ATP interaction, Ann. Rev. Biochem. 49:921–956 (1980).CrossRefGoogle Scholar
  2. Aksoy, M. O., Mras, S., Kamm, K. E., Murphy, R. A., Ca++, cAMP, and changes in myosin phosphorylation during contraction of smooth muscle, Am. J. Physiol. 245:C255–255C270 (1983).Google Scholar
  3. Albano, J. D., Brown, B. L., Ekins, R. P., Tait, S. A. and Tait, J. R., The effects of potassium, 5-hydroxytryptamine, adrenocorticotrophin and angiotensin II on the concentration of adenosine 3′:5′-cyclic monophosphate in suspensions of dispersed rat adrenal zona glomerulosa and zona fasiculata cells, Biochem. J. 142:391–400 (1974).Google Scholar
  4. Albert, P. R. and Tashjian, A. H., Thyrotropin-releasing hormone-induced spike and plateau in cytosolic free Ca++ concentrations in pituitary cells, J. Biol. Chem. 259:5827–5832 (1984a).Google Scholar
  5. Albert, P. R. and Tashjian, A. H., Relationship of thyrotropin-releasing hormone-induced spike and plateau phases in cytosolic free Ca++ concentrations to hormone secretion: selective blockade using ionomycin and nifedipine, J. Biol. Chem. 259:15350–15363 (1984b).Google Scholar
  6. Alkon, D. L., Calcium-mediated reduction of ionic currents: a biophysical memory trace, Science 226:1037–1045 (1984).CrossRefGoogle Scholar
  7. Apfeldorf, W. F. and Rasmussen, H., Angiotensin II induces a transient rise in cytosolic calcium in adrenal zona glomerulosa. (In preparation).Google Scholar
  8. Ballocu, L. R. and Cheung, W. Y., The role of calcium in prostaglandin and thromboxane biosynthesis, in: “Calcium and Cell Physiology,” D. Marme, ed., Springer-Verlag, Berlin (1985).Google Scholar
  9. Barrett, P., Kojima, I., Kojima, K., Zawalich, K., Isales, C. and Rasmussen, H., Temporal patterns of protein phosphorylation of angiotensin II, A23187 and/or TPA in adrenal glomerulosa cells, Biochem. J. (Submitted), (1986a).Google Scholar
  10. Barrett, P., Kojima, I., Kojima, K., Zawalich, K., Isales, C. and Rasmussen, H., Short term memory in the calcium messenger system: evidence for a sustained activation of C-kinase in adrenal glomerulosa cells, Biochem. J. (Submitted) (1986b).Google Scholar
  11. Berridge, M. J., Inositol triphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360 (1984).Google Scholar
  12. Berridge, M. J. and Irvine, R. F., Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321 (1984).CrossRefGoogle Scholar
  13. Blumenthal, D. K. and Stull, J. T., Activation of skeletal muscle myosin light chain kinase by calcium and calmodulin, Biochemistry 19:5608–5624 (1980).CrossRefGoogle Scholar
  14. Bolton, T. B., Mechanism of action of transmitters and other substances on smooth muscle, Physiol, Rev. 59:606–718 (1973).Google Scholar
  15. Busa, W. B. and Nuccitelli, R., Metabolic regulation via intracellular pH, Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15):R409–R438 (1984).Google Scholar
  16. Danthulun, N. R. and Deth, R. C., Phorbol ester-induced contraction of arterial smooth muscle and inhibition of α-adrenergic response, Bio-chem. Biophys. Res. Commun. 125:1103–1109 (1984).CrossRefGoogle Scholar
  17. Delbeke, D., Kojima, I., Dannies, P. and Rasmussen, H., Synergistic stimulation of prolactin release by phorbol ester, A23187, and forskolin, Biochem. Biophys. Res. Commun. 123:735–741 (1984a).CrossRefGoogle Scholar
  18. Delbeke, D., Scammell, J. G., Dannies, P. S., Difference in calcium requirements for forskolin-induced release of prolactin from normal pituitary cells and GH4C1 cells in culture, Endocrinology 114:1433–1440 (1984b).CrossRefGoogle Scholar
  19. Downes, C. P. and Michell, R. H., The polyphosphoinositide phosphodiesterase of erythrocyte membranes, Biochem. J. 198:133–140 (1981).Google Scholar
  20. Downes, C. P. and Michell, R. H., The control of Ca of the polyphosphoinositide phosphodiesterase and the Ca pump ATPase in human erythrocytes, Biochem. J. 202:53–58 (1982a).Google Scholar
  21. Downes, C. P. and Michell, R. H., Phosphatidylinositol-4 phosphate and phos-phatidylinositol-4,5 bis-phosphate: lipids in search of a function, Cell Calcium 3:467–502 (1982b).CrossRefGoogle Scholar
  22. Drust, D. S. and Martin, T. F., Thyrotropin-releasing hormone rapidly and transiently stimulates cytosolic calcium-dependent protein phosphorylation in GH3 pituitary cells, J. Biol. Chem. 257:7566–7573 (1982a).Google Scholar
  23. Drust, D. S., Sutton, C. A. and Martin, T. F., Thyrotropin-releasing hormone and cyclic AMP activate distinctive pathways of proteins phosphorylation in GH pituitary cells, J. Biol. Chem. 257:3306–3312 (1982b).Google Scholar
  24. Drust, D. S. and Martin, T. F., Thyrotropin-releasing hormone rapidly activates protein phosphorylation in GH3 pituitary cells by a lipid-linked, protein kinase C-mediated pathway, J. Biol. Chem. 259:14520–14530 (1984).Google Scholar
  25. Fakunding, J. L., Chow, R. and Catt, K. J., The role of calcium in the stimulation of aldosterone production by adrenocorticotropin, angiotensin II, and potassium in isolated glomerulosa cells, Endocrinology 105:327–333 (1979).CrossRefGoogle Scholar
  26. Fakunding, J. L. and Catt, K. J., Dependence of aldosterone-stimulation in adrenal glomerulosa cells on calcium uptake: effects of lanthanum and verapamil, Endocrinology 107:1345–1353 (1980).CrossRefGoogle Scholar
  27. Fearon, C. W. and Tashjian, A. H., Jr., Thyrotropin-releasing-hormone induces redistribution of protein kinase C in GH3C1 rat pituitary cells, J. Biol. Chem. 260 (in press) (1986).Google Scholar
  28. Feinstein, M. B., Halenda, S. P. and Zavocio, G. B., Calcium and platelet function, in: “Calcium and Cell Physiology,” D. Marme, ed., Springer-Verlag, Berlin (1985).Google Scholar
  29. Forder, J., Scriabine, A. and Rasmussen, H., Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction, J. Pharm. Exp. Ther. 235(2):267–273 (1985).Google Scholar
  30. Foster, R., Lobo, M. V., Rasmussen, H. and Marusic, E. T., Calcium: its role in the mechanism of action of angiotensin II and potassium in aldosterone production, Endocrinology 109:2196–2201 (1981).CrossRefGoogle Scholar
  31. Foster, R., Lobo, M. V., Rasmussen, H. and Marusic, E. T., The effect of calcium in the potassium induced depolarization in adrenal glomerulosa cells, FEBS Lett. 149:253–257 (1982).CrossRefGoogle Scholar
  32. Fujita, K., Aguilera, G. and Catt, K. J., The role of cyclic AMP in aldosterone production by isolated zona glomerulosa cells, J. Biol. Chem. 254: 8567–8574 (1979).Google Scholar
  33. Gershengorn, M. C., Thyrotropin-releasing hormone stimulation of prolactin release from clonal rat pituitary cells. Evidence for action independent of extracellular calcium, J. Clin. Invest. 67:1769–1776 (1981).CrossRefGoogle Scholar
  34. Gershengorn, M. C., Calcium influx is not required for TRH to elevate free cytoplasmic calcium in GH3 cells, Endocrinology 113:1522–1524 (1983).CrossRefGoogle Scholar
  35. Gershengorn, M. C. and Thaw, M., Thyrotropin-releasing hormone (TRH) stimulates biphasic elevation of cytoplasmic free calcium in GH3 cells: Further evidence that TRH mobilizes cellular and extracellular Ca++, Endocrinology 116:591–596 (1985).CrossRefGoogle Scholar
  36. Holmsen, H., Receptor-controlled phosphatidate synthesis during acid hydrolase secretion from platelets, in:. “Calcium in Biological Systems,” R. P. Rubin, G. B. Weiss, J. W. Putney, Jr., (eds.), Plenum Press, New York (1985).Google Scholar
  37. Hyatt, P. J., Tait, J. F. and Tait, A. S., The mechanism of the effect of K+ on the steroidogenesis of rat zona glomerulosa cells of the adrenal cortex: role of cyclic AMP, Proc. R. Soc. Lond. B266:21–42 (1986).CrossRefGoogle Scholar
  38. Kishimoto, K., Takai, Y., Mori, T., Kikkawa, U. and Nishizuka, Y., Activation of calcium and phospholipid-dependent protein kinase by diacylgly-cerol, its possible relation to phosphatidylinositol turnover, J. Biol. Chem. 255:2273–2276 (1980).Google Scholar
  39. Kojima, I., Kojima, K., Kreutter, D. and Rasmussen, H., The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways, J. Biol. Chem. 259:14448–14457 (1984a).Google Scholar
  40. Kojima, I., Kojima, K. and Rasmussen, H., Role of calcium fluxes in the sustained phase of angiotensin II mediated aldosterone secretion from adrenal glomerulosa cells, J. Biol. Chem. 260:9177–9184 (1985a).Google Scholar
  41. Kojima, I., Kojima, K. and Rasmussen, H., Effect of angiotensin II and K+ on Ca++-efflux and aldosterone production in adrenal glomerulosa cells, Am. J. Physiol. 248:E36–E43 (1985b).Google Scholar
  42. Kojima, I., Kojima, K. and Rasmussen, H., Role of calcium and cAMP in the action of adrenocorticotropin on aldosterone secretion, J. Biol. Chem. 260:4248–4256 (1985c).Google Scholar
  43. Kojima, I., Kojima, K. and Rasmussen, H., Characteristics of angiotensin II-, K, and ACTH-induced calcium influx in adrenal glomerulosa cells, J. Biol. Chem. 260:9171–9176 (1985d).Google Scholar
  44. Kojima, I., Kojima, K. and Rasmussen, H., Intracellular calcium and adenosine 3;,5;-cyclic monophosphate as mediators of potassium-induced aldosterone secretion, Biochem. J. 228:69–76 (1985e).Google Scholar
  45. Kojima, K., Kojima, I. and Rasmussen, H., Dihydropyridine calcium agonist and antagonists effects on aldosterone secretion Am. J. Physiol. 245: E645–645E650 (1984a).Google Scholar
  46. Macara, I. G., Oncogenes, ions and phospholipids, Am. J. Physiol. 248:C3–C11 (1985).Google Scholar
  47. Martin, T. F., Thyrotropin-releasing hormone rapidly activates the phospho-diester hydrolysis of polyphospholinositides in GH3 pituitary cells. Evidence for the role of a polyphosphoinositide-specific phospholipase C in hormone action, J. Biol. Chem. 258:14816–14822 (1983).Google Scholar
  48. Martin, T. F. and Kowalchyk, J. A., Evidence for the role of calcium and diacylglycerol as dual second messengers in thyrotropin-releasing hormone action: involvement of Ca++, Endocrinology 115:1527–1536 (1984).CrossRefGoogle Scholar
  49. Montague, W., Morgan, N. G., Rumford, G. M. and Prince, C. A., Effect of glucose on polyphosphoinositide metabolism in isolated rat islets of Langerhans, Biochem. J. 227:483–489 (1985).Google Scholar
  50. Morgan, J. P. and Morgan, K. G., Vascular smooth muscle: the first recorded Ca2 transients, Pflgers Arch 395:75–77 (1982).CrossRefGoogle Scholar
  51. Morgan, J. P. and Morgan, K. G., Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein, J. Physiol. 351: 155–167 (1984).Google Scholar
  52. Morgan, J. P. and Morgan, K. G., Alteration of cytoplasmic ionized calcium levels in smooth muscle by vasodilators in the ferret, J. Physiol. (Lond) 357:539–551 (1986).Google Scholar
  53. Nishizuka, Y. and Takai, Y., Calcium and phospholipid turnover in a new receptor function for protein phosphorylation, in: O. M. Rosen and E. G. Krebs, eds, “Protein Phosphorylation,” New York: Cold Spring Harbor Laboratory (1981).Google Scholar
  54. Nishizuka, Y., Calcium, phospholipid turnover and transmembrane signalling, Phil. Trans. Roy. Soc. (Lond) B302:101–112 (1983).CrossRefGoogle Scholar
  55. Pandol, S. J., Schoeffield, M. S., Sachs, G. and Muallem, S., Role of free cytosolic calcium in secretagogue-stimulated amylase release from dispersed acini from guinea pig pancreas, J. Biol. Chem. 260(18): 10081–10086 (1985).Google Scholar
  56. Parks, S. and Rasmussen, H., Activation of tracheal smooth muscle contraction: synergism between Ca and activators of protein kinase C, Proc. Natl. Acad. Sci. USA 82:8835–8839 (1985).CrossRefGoogle Scholar
  57. Rasmussen, H. and Barrett, P. Q., Calcium messenger system: an integrated view, Physiol. Rev. 64:938–984 (1984).Google Scholar
  58. Rasmussen, H., Forder, J., Kojima, I. and Scriabine, A., TPA-induced contraction of isolated rabbit vascular smooth muscle, Biochem. Biophys. Res. Commun. 122:776–784 (1984).CrossRefGoogle Scholar
  59. Sala, G. B., Hyahi, K., Catt, K. J. and Dufan, M. L., Adrenocorticotropin action in isolated adrenal cells, J. Biol. Chem. 254:3861–3865 (1979).Google Scholar
  60. Sha’afi, R. I. and Naccache, P. H., Relationship between calcium, arachi-donic acid metabolites and neutrophil activation, in: “Calcium in Biological Systems,” R. P. Rubin, G. B. Weiss, J. W. Putney, Jr., eds, Plenum Press, New York (1985).Google Scholar
  61. Silver, P. J. and Stull, J. T., Phosphorylation of myosin light chain and Phosphorylase in tracheal smooth muscle in response to KCl and carba-chol, Mol. Pharmacol. 25:267–274 (1984).Google Scholar
  62. Streb, H., Irvine, R. F., Berridge, M. J. and Schulz, I., Release of Ca++ from a non-mitochondrial store in pancreatic acinar cell by inositol-1–4,5-trisphophate, Nature (Lond) 306:67–69 (1983).CrossRefGoogle Scholar
  63. Takai, Y., Kishimoto, A., Inoue, M. and Nishizuka, Y., Studies on a cyclic nucleotide-independent protein kinase and its pro-enzyme in mammalian tissues, J. Biol. Chem. 252:7603–7609 (1977).Google Scholar
  64. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T. and Nishizuka, Y., Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system, Biochem. Biophys. Res. Commun. 91:1218–1224 (1979).CrossRefGoogle Scholar
  65. Williams, B. C., McDougall, J. G., Tait, J. F. and Tait, S. A., Calcium efflux and steroid output from superfused rat adrenal cells: effects of potassium, adrenocorticotropic hormone, 5-hydroxytryptamine, adeno-sine-3′5′-cyclic monophosphate and angiotensin II and III, Biochim. Biophys. Acta. 639:243–295 (1981).CrossRefGoogle Scholar
  66. Wolf, M., Cuatrecasas, P. and Sahyoun, N., Interaction of protein kinase C with membranes is regulated by Ca++, phorbol esters, and ATP, J. Biol. Chem. 2260:15718–15722 (1985a).Google Scholar
  67. Wolf, M., Levine, H., III, May, W. S., Jr., Cuatrecasas, P. and Sahyoun, N., A model for intracellular translocation of protein kinase C involving synergism between Ca++ and phorbol esters, Nature 317:546–549 (1985b).CrossRefGoogle Scholar
  68. Zawalich, W., Brown, C. and Rasmussen, H., Insulin secretion: combined effects of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 117:448–455 (1983).CrossRefGoogle Scholar
  69. Zawalich, W., Zawalich, K. and Rasmussen, H., Insulin secretion: combined tolbutamide, forskolin and TPA mimic action of glucose, Cell Calcium 5:551–558 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Howard Rasmussen
    • 1
  • Paula Barrett
    • 1
  1. 1.Departments of Cell Biology and Internal MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations