Advertisement

Molecular Mechanisms of β-Adrenergic Receptor Desensitization

  • David R. Sibley
  • Jeffrey L. Benovic
  • Marc G. Caron
  • Robert J. Lefkowitz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)

Abstract

Desensitization or adaptation is well known in biological regulation. Also referred to as tachyphylaxis, tolerance or refractoriness, it is most commonly observed as a loss of cellular responsiveness to a neurotransmitter or drug after repeated or prolonged exposure to that agent. Examples of systems in which desensitization is observed include Chemotaxis of bacteria or mammalian polymorphonuclear leukocytes, neurotransmission by various neurotransmitters at synapses, stimulation of diverse physiological processes in eukaryotes by many drugs and hormones, and sensory perception. In the context of clinical therapeutics, desensitization significantly limits the efficacy of numerous pharmacological agents.

Keywords

Adenylate Cyclase Adenylate Cyclase Activity Receptor Phosphorylation Adenylate Cyclase System Heterologous Desensitization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W. B. and Jaworski, C. J., Isoproterenol-induced desensitization of adenylate cyclase responsiveness in a cell-free system, J. Biol. Chem., 254:4596–4601 (1979).Google Scholar
  2. Attramadal, H., Le Gac, F., Jahnsen, T. and Hansson, V., β-Adrenergic regulation of Sertoli cell adenylyl cyclase: Desensitization by homologous hormone, Mol. Cell. Endocrinol., 34:1–6 (1984).CrossRefGoogle Scholar
  3. Balkin, M. S. and Sonenberg, M., Hormone-induced homologous and heterologous desensitization in the rat adipocyte, Endocrinology, 109:1176–1183 (1981).CrossRefGoogle Scholar
  4. Barovsky, K., Pedone, C. and Brooker, G., Forskolin-stimulated cyclic AMP accumulation mediates protein synthesis-dependent refractoriness in C6-2B rat glioma cells, J. Cyclic Nucleotide Prot. Phosphorylat. Res., 9:181–189 (1983).Google Scholar
  5. Benovic, J. L., Pike, L. J., Cerione, R. A., Staniszewski, C., Yoshimasa, T., Codina, J., Caron, M. G. and Lefkowitz, R. J., Phosphorylation of the mammalian β-adrenergic receptor by cyclic AMP-dependent protein kinase: Regulation of the rate of receptor phosphorylation and dephos-phorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein, J. Biol. Chem., 260:7094–7101 (1985).Google Scholar
  6. Benovic, J. L., Strasser, R. H., Caron, M. G. and Lefkowitz, R. J.,-Adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor, Proc. Natl. Acad. Sci. USA, 83:2797–2801 (1986).CrossRefGoogle Scholar
  7. Briggs, M. M., Stadel, J. M., Iyengar, R. and Lefkowitz, R. J., Functional modification of the guanine nucleotide regulatory protein after desen-sitization of turkey erythrocytes by catecholamines, Arch. Biochem. Biophys., 224:142–151 (1983).CrossRefGoogle Scholar
  8. Chuang, D.-M. and Costa, E., Evidence for internalization of the recognition site of β-adrenergic receptors during receptor subsensitivity induced by (-)isoproterenol, Proc. Natl. Acad. Sci. USA, 76:3024–3028 (1979).CrossRefGoogle Scholar
  9. Chuang, D.-M., Kinnier, W. J., Farber, L. and Costa, E., A biochemical study of receptor internalization during β-adrenergic receptor desensitiza-tion in frog erythrocytes, Mol. Pharmacol. 18:348–355 (1980).Google Scholar
  10. Clark, R. and Butcher, R. W., Desensitization of adenylate cyclase in cultured fibroblasts with prostaglandin E1 and epinephrine, J. Biol. Chem., 254:9373–9378 (1979).Google Scholar
  11. Clark, R. B., Friedman, J., Prashad, N. and Ruoho, A. E., Epinephrine-induced sequestration of the β-adrenergic receptor in cultured S49 WT and cyc lymphoma cells, J. Cyclic Nucleotide Prot. Phosphorylat. Res., 10:97–119 (1985).Google Scholar
  12. de Vellis, J. and Brooker, G., Reversal of catecholamine refractoriness by inhibitors of RNA and protein synthesis, Science, 186:1221–1223 (1974).CrossRefGoogle Scholar
  13. Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J. and Strader, C. D., Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin, Nature, (London), 321:75–79 (1986).CrossRefGoogle Scholar
  14. Doss, R. C., Perkins, J. P. and Harden, T. K., Recovery of β-adrenergic receptors following long-term exposure of astrocytoma cells to catecholamine: Role of protein synthesis, J. Biol. Chem., 256:12281–12286 (1981).Google Scholar
  15. Fishman, P. H., Mallorga, P. and Taiman, J. F., Catecholamine-induced desensitization of adenylate cyclase in rat glioma C6 cells: Evidence for specific uncoupling of beta-adrenergic receptors from a functional regulatory component of adenylate cyclase, Mol. Pharmacol., 20:310–318 (1981).Google Scholar
  16. Frederich, R. C., Jr., Waldo, G. L., Harden, T. K. and Perkins, J. P., Characterization of agonist-induced β-adrenergic receptor-specific desensitization in C62B glioma cells, J. Cyclic Nucleotide Prot. Phosphorylat. Res., 9:103–118 (1983).Google Scholar
  17. Garrity, M. J., Andreasen, T. J., Storm, D. R. and Robertson, R. P., Prostaglandin E-induced heterologous desensitization of hepatic adenylate cyclase: Consequences on the guanyl nucleotide regulatory complex, J. Biol. Chem., 258:8692–8697 (1983).Google Scholar
  18. Green, D. A. and Clark, R. B., Adenylate cyclase coupling proteins are not essential for agonist-specific desensitization of lymphoma cells, J. Biol. Chem., 256:2105–2108 (1981).Google Scholar
  19. Green, D. A., Friedman, J. and Richard, B. C., Epinephrine desensitization of adenylate cyclase from cyc- and S49 cultured lymphoma cells, J. Cyclic Nucleotide Res., 7:161–172 (1981).Google Scholar
  20. Harden, T. K., Agonist-induced desensitization of the β-adrenergic receptor-linked adenylate cyclase, Pharmacol. Rev., 35:5–32 (1983).Google Scholar
  21. Harden, T. K., Cotton, C. U., Waldo, G. L., Lutton, J. K. and Perkins, J. P., Catecholamine-induced alteration in the sedimentation behavior of membrane-bound β-adrenergic receptors, Science, 210:441–443 (1980).CrossRefGoogle Scholar
  22. Harden, T. K., Su, Y.-F. and Perkins, J. P., Catecholamine-induced desensitization involves an uncoupling of beta-adrenergic receptors and adenylate cyclase, J. Cyclic Nucleotide Res., 5:99–106 (1979).Google Scholar
  23. Hertel, C., Muller, P., Portenier, M. and Staehelin, M., Determination of the desensitization of β-adrenergic receptors by [3H]CGP-12177, Bio-chem. J., 216:669–674 (1983a).Google Scholar
  24. Hertel, C., Staehelin, M. and Perkins, J. P., Evidence for intravesicular β-adrenergic receptors in membrane fractions from desensitized cells: Binding of the hydrophilic ligand CGP-12177 only in the presence of alamethicin, J. Cyclic Nucleotide Prot. Phosphorylat. Res., 9:119–128 (1983b).Google Scholar
  25. Hoffman, B. B., Mullikin-Kilpatrick, D. and Lefkowitz, R. J., Desensitization of beta-adrenergic stimulated adenylate cyclase in turkey erythrocytes, J. Cyclic Nucleotide Res., 5:355–366 (1979).Google Scholar
  26. Homburger, V., Lucas, M., Cantau, B., Barabe, J., Penit, J. and Bockaert, J., Further evidence that desensitization of β-adrenergic sensitive adenylate cyclase proceeds in two steps: Modification of the coupling and loss of β-adrenergic receptors, J. Biol. Chem., 255:10436–10444 (1980).Google Scholar
  27. Hudson, T. H. and Johnson, G. L., Functional alterations in components of pigeon erythrocyte adenylate cyclase following desensitization to isoproterenol, Mol. Pharmacol., 20:694–703 (1981).Google Scholar
  28. Hunzicher-Dunn, M., Derda, D., Jungmann, R. A., and Birnbaumer, L., Resensi-tization of the desensitized follicular adenylyl cyclase system to luteinizing hormone, Endocrinology, 104:1785–1793 (1979).CrossRefGoogle Scholar
  29. Johnson, G. L., Wolfe, B. B., Harden, T. K., Molinoff, P. B. and Perkins, J. P., Role of β-adrenergic receptors in catecholamine-induced desensitization of adenylate cyclase in human astrocytoma cells, J. Biol. Chem., 253:1472–1480 (1978).Google Scholar
  30. Kassis, S. and Fishman, P. H., Different mechanisms of desensitization of adenylate cyclase by isoproterenol and prostaglandin E1 in human fibroblasts: Role of regulatory components in desensitization, J. Biol. Chem., 257:5312–5318 (1982).Google Scholar
  31. Kassis, S. and Fishman, P. H., Functional alteration of the β-adrenergic receptor during desensitization of mammalian adenylate cyclase by β-agonists, Proc. Natl. Acad. Sci. USA, 81:6686–6690 (1984).CrossRefGoogle Scholar
  32. Kelleher, D. J., Pessin, J. E., Ruoho, A. E. and Johnson, G. L., Phorbol ester induces desensitization of adenylate cyclase and phosphorylation of the β-adrenergic receptor in turkey erythrocytes, Proc. Natl. Acad. Sci. USA, 81:4316–4320 (1984).CrossRefGoogle Scholar
  33. Kent, R. S., De Lean, A. and Lefkowitz, R. J., A quantitative analysis of beta-adrenergic receptor interaction: Resolution of high and low affinity states of the receptor by computer modeling of ligand binding data, Mol. Pharmacol., 17:14–23 (1979).Google Scholar
  34. Kirchik, H. J., Iyengar, R. and Birnbaumer, L., Human chorionic gonadotropin-induced heterologous desensitization of adenylate cyclase from highly lutenized rat ovaries: Attenuation of regulatory N component activity, Endocrinology, 113:1638–1646 (1983).CrossRefGoogle Scholar
  35. Koschel, K., A hormone-independent rise of adenosine 3′, 5′-monophosphate desensitizes coupling of β-adrenergic receptors by adenylate cyclase in rat glioma C6-cells, Eur. J. Biochem., 108:163–169 (1980).CrossRefGoogle Scholar
  36. Mahan, L. C., Motolsky, H. J. and Insel, P. A., Do agonists promote rapid internalization of β-adrenergic receptors?, Proc. Natl. Acad. Sci. USA 82:6566–6570 (1985).CrossRefGoogle Scholar
  37. Mickey, J. C., Tate, R. and Lefkowitz, R. J., Subsensitivity of adenylate cyclase and decreased β-adrenergic receptor binding after chronic exposure to (-)isoproterenol in vitro, J. Biol. Chem., 250:5727–5729 (1975).Google Scholar
  38. Mickey, J. V., Tate, T., Mullikin, D. and Lefkowitz, R. J., Regulation of adenylate cyclase-coupled beta-adrenergic receptor binding sites by beta-adrenergic catecholamines in vitro, Mol. Pharmacol., 12:409–419 (1976).Google Scholar
  39. Morishima, I., Thompson, W. J., Robison, G. A. and Strada, S. J., Loss and restoration of sensitivity to epinephrine in cultured cells: Effect of inhibitors of RNA and protein synthesis, Mol. Pharmacol., 18:370–378 (1980).Google Scholar
  40. Moylan, R. D., Barovsky, K. and Brooker, G., N6, O2+-dibutyryl cyclic AMP and cholera toxin-induced β-adrenergic receptor loss in cultured cells, J. Biol. Chem., 257:4947–4950 (1982).Google Scholar
  41. Mukherjee, C., Caron, M. G. and Lefkowitz, R. J., Catecholamine-induced sub-sensitivity of adenylate cyclase associated with loss of beta-adrenergic receptor binding sites, Proc. Natl. Acad. Sci. USA, 72:1945–1949 (1975).CrossRefGoogle Scholar
  42. Mukherjee, C., Caron, M. G. and Lefkowitz, R. J., Regulation of adenylate cyclase coupled β-adrenergic receptors by β-adrenergic catecholamines, Endocrinology, 99:347–357 (1976).CrossRefGoogle Scholar
  43. Newcombe, D. S., Ciosek, C. P., Jr., Ishikawa, Y. and Fahey, J. V., Human synoviocytes: Activation and desensitization by prostaglandins and 1-epinephrine, Proc. Natl. Acad. Sci. USA, 72:3124–3128 (1975).CrossRefGoogle Scholar
  44. Nickols, G. A. and Brooker G., Induction of refractoriness to isoproterenol by prior treatment of C6-2B rat astrocytoma cells with cholera toxin, J. Cyclic Nucleotide Res., 5:435–447 (1979).Google Scholar
  45. Nickols, G. A. and Brooker, G., Potentiation of cholera toxin-stimulated cyclic AMP production in cultured cells by inhibitors of RNA and protein synthesis, J. Biol. Chem., 255:23–26 (1980).Google Scholar
  46. Noda, C., Shinjyo, F., Tomomura, A., Kato, S., Nakamura, T. and Ichihara, A., Mechanism of heterologous desensitization of the adenylate cyclase system by glucagon in primary cultures of adult rat hepatocytes, J. Biol. Chem., 259:7747–7754 (1984).Google Scholar
  47. Pastan, I. H. and Willingham, M. C., Receptor-mediated endocytosis of hormones in cultured cells, Annu. Rev. Physiol., 43:239–250 (1981).CrossRefGoogle Scholar
  48. Perkins, J. P., Desensitization of the response of adenylate cyclase to catecholamines, in: “Current Topics in Membranes and Transport,” Vol. 18, A. Kleinzeller, and M. B. Martin, eds., pp. 85–108, Academic Press, New York (1983).Google Scholar
  49. Rich, K. A., Codina, J., Flloyd, G., Sekura, R., Hildebrandt, J. D. and Iyengar, R., Glucagon-induced heterologous desensitization of the MDCK cell adenylyl cyclase, J. Biol. Chem., 259:7893–7901 (1984).Google Scholar
  50. Salomon, Y., Ezra, E. and Amir-Zaltsman, Y., The role of GTP in lutropin-induced desensitization of the GTP regulatory cycle and adenylate cyclase in the rat ovary, Adv. Cyclic Nucleotide Res., 14:101–109 (1981).Google Scholar
  51. Shear, M., Insel, P. A., Melmon, K. L. and Coffino, P., Agonist-specific refractoriness induced by isoproterenol, J. Biol. Chem., 251:7572–7576 (1976).Google Scholar
  52. Sibley, D. R., Nambi, P., Peters, J. R. and Lefkowitz, R. J., Phorbol die-sters promote β”adrenergic receptor phosphorylation and adenylate cyclase desensitization in duck erythrocytes, Biochem. Biophys. Res. Commun., 121:973–979 (1984a).CrossRefGoogle Scholar
  53. Sibley, D. R., Peters, J. R., Nambi, P., Caron, M. G. and Lefkowitz, R. J., Desensitization of turkey erythrocyte adenylate cyclase: β-Adrenergic receptor phosphorylation is correlated with attenuation of adenylate cyclase activity, J. Biol. Chem., 259:9742–9749 (1984b).Google Scholar
  54. Sibley, D. R., Strasser, R. H., Caron, M. G. and Lefkowitz, R. J., Homologous desensitization of adenylate cyclase is associated with phosphorylation of the β”adrenergic receptor, J. Biol. Chem., 260:3883–3886 (1985).Google Scholar
  55. Simpson, I. A. and Pfeuffer, T., Functional desensitization of β-adrenergic receptors of avian erythrocytes by catecholamines and adenosine 3′, 5′-phosphate, Eur. J. Biochem., 111:111–116 (1980).CrossRefGoogle Scholar
  56. Stadel, J. M., De Lean, A., Mullikin-Kilpatrick, D., Sawyer, D. D. and Lefkowitz, R. J., Catecholamine-induced desensitization in turkey erythrocytes: cAMP mediated impairment of high affinity agonist binding without alteration in receptor number, J. Cyclic Nucleotide Res., 7:37–47 (1981).Google Scholar
  57. Stadel, J. M., Nambi, P. Lavin, T. N., Heald, S. L., Caron, M. G. and Lefko-witz, R. J., Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase: Structural alterations in the β-adrenergic receptor revealed by photoaffinity labeling, J. Biol. Chem., 257:9242–9245 (1982).Google Scholar
  58. Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. F., Caron, M. G. and Lefkowitz, R. J., Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the β-adrenergic receptor, Proc. Natl. Acad. Sci. USA., 80:3173–3177 (1983a).CrossRefGoogle Scholar
  59. Stadel, J. M., Strulovici, B., Nambi, P., Lavin, T. N., Briggs, M. M., Caron, M. G. and Lefkowitz, R. J., Desensitization of the β-adrenergic receptor of frog erythrocytes: Recovery and characterization of the down-regulated receptors in sequestered vesicles, J. Biol. Chem., 258:3032–3038 (1983b).Google Scholar
  60. Strader, C. D., Sibley, D. R. and Lefkowitz, R. J., Association of sequestered beta-adrenergic receptors with the plasma membrane: A novel mechanism for receptor down regulation, Life Sci., 35:1601–1610 (1984).CrossRefGoogle Scholar
  61. Strasser, R. H. and Lefkowitz, R. J., Homologous desensitization of β-adrenergic receptor coupled adenylate cyclase: Resensitization by polyethylene glycol treatment, J. Biol. Chem., 260:4561–4564 (1985).Google Scholar
  62. Strasser, R. H., Sibley, D. R. and Lefkowitz, R. J., A novel catecholamine-activated adenosine cyclic 3′, 5′-phosphate independent pathway for β-adrenergic receptor phosphorylation in wild-type and mutant S49 lymphoma cells: Mechanism of homologous desensitization of adenylate cyclase, Biochemistry, 25:1371–1377 (1986).CrossRefGoogle Scholar
  63. Strulovici, B., Cerione, R. A., Kilpatrick, B. P., Caron, M. G. and Lefkowitz, R. J., Direct demonstration of impaired functionality of a purified desensitized β-adrenergic receptor in a reconstituted system, Science, 225:837–840 (1984).CrossRefGoogle Scholar
  64. Strulovici, B. and Lefkowitz, R. J., Activation, desensitization, and recycling of frog erythrocyte β-adrenergic receptors: Differential perturbation by in situ trypsinization, J. Biol. Chem., 259:4389–4395 (1984).Google Scholar
  65. Strulovici, B., Stadel, J. M. and Lefkowitz, R. J., Functional integrity of desensitizied β-adrenergic receptors: Internalized receptors reconstitute catecholamine-stimulated adenylate cyclase activity, J. Biol. Chem., 258:6410–6414 (1983).Google Scholar
  66. Su, Y.-F., Cubeddu, L. and Perkins, J. P., Regulation of adenosine 3′:5′-monophosphate content of human astrocytoma cells: Desensitization to catecholamines and prostaglandins, J. Cyclic Nucleotide Res., 2:257–270 (1976).Google Scholar
  67. Su, Y.-F., Harden, T. K. and Perkins, J. P., Isoproterenol-induced desensitization of adenylate cyclase in human astrocytoma cells, J. Biol. Chem., 254:38–41 (1979).Google Scholar
  68. Su, Y.-F., Harden, T. K. and Perkins, J. P., Catecholamine-specific desensitization of adenylate cyclase: Evidence for a multistep process, J. Biol. Chem., 255:7410–7419 (1980).Google Scholar
  69. Terasaki, W. L., Brooker, G., de Vellis, J., Inglish, D., Husu, C.-Y. and Moylan, R. D., Involvement of cyclic AMP and protein synthesis in catecholamine refractoriness, Adv. Cyclic Nucleotide Res., 9:33–52 (1978).Google Scholar
  70. Toews, M. L., Waldo, G. L., Harden, T. K. and Perkins, J. P., Relationship between an altered membrane form and a low affinity form of the β-adrenergic receptor occurring during catecholamine-induced desensitization, J. Biol. Chem., 259:11844–11850 (1984).Google Scholar
  71. Waldo, G. L., Northup, J. K., Perkins, J. P. and Harden, T. K., Characterization of an altered membrane form of the β-adrenergic receptor produced during agonist-induced desensitization, J. Biol. Chem., 258:13900–13908 (1983).Google Scholar
  72. Wessels, M. R., Mullikin, D. and Lefkowitz, R. J., Differences between agonist and antagonist binding following beta-adrenergic receptor desensitization, J. Biol. Chem., 253:3371–3373 (1978).Google Scholar
  73. Wessels, M. R., Mullikin, D. and Lefkowitz, R. J., Selective alteration in high affinity agonist binding: A mechanism of beta-adrenergic receptor desensitization, Mol. Pharmacol., 16:10–20 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • David R. Sibley
    • 1
  • Jeffrey L. Benovic
    • 1
  • Marc G. Caron
    • 1
  • Robert J. Lefkowitz
    • 1
  1. 1.Howard Hughes Medical Institute, Departments of Medicine, Biochemistry and PhysiologyDuke University Medical CenterDurhamUSA

Personalised recommendations