Molecular Mechanisms of Acidic Amino Acid Release from Mossy Fiber Terminals of Rat Cerebellum

  • David M. Terrian
  • Scott B. Bischoff
  • Monica A. Schwartz
  • Robert V. Dorman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


The stimulus-induced release of neurotransmitters from nerve terminals requires rapid and reversible changes in the permeability properties of presynaptic membranes. Phospholipids, which provide the basis for the bilayer structure of biological membranes, have been implicated in chemical transmission. In particular, it has been suggested that an obligatory step in neurotransmitter release is the accumulation of unesterified, polyunsaturated fatty acids following the depolarization-induced degradation of phospholipids. Depolarization of cerebral synaptosomes results in the Ca2+-dependent release of free arachidonic acid (Lazarewicz et al., 1983) from phosphatidylcholine and phosphatidylinositol (Majewska and Sun, 1982). The Ca2+dependent release of gamma-aminobutyric acid (GABA) from cerebral synaptosomes has also been shown to require the accumulation of free arachidonic acid and this release can be mimicked with exogenous arachidonic acid, but not other free fatty acids (Asakura and Matsuda, 1984). The release of neurotransmitters induced by exogenous fatty acids does not require Ca2+ (Rhoads et al., 1983), suggesting that the Ca2+ is required for phospholipid degradation and fatty acid accumulation.


Arachidonic Acid Mossy Fiber Acidic Amino Acid Cyclooxygenase Inhibitor Exogenous Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asakura, T. and Matsuda, M., Efflux of 4-aminobutyric acid from and appearance of free arachidonic acid inside synaptosomes, Biochim Biophys Acta, 773:301–307 (1984).CrossRefGoogle Scholar
  2. Bradford, P. G., Marinetti, G. V. and Abood, L. G., Stimulation of phospho-lipase A2 and secretion of catecholamines from brain synaptosomes by potassium and A23187, J Neurochem 41:1684–1693 (1983).CrossRefGoogle Scholar
  3. Chan-Palay, V., The indoleamine afferent axons to the cerebellum, in: “Cerebellar Dentate Nucleus: Organization, Cytology and Transmitters,” Springer-Verlag, New York (1977).Google Scholar
  4. deBarry, J., Langley, O. K., Vincendon, G. and Gombos, G., L-Glutamate and L-glutamine uptake in adult rat cerebellum: an autoradiographic study, Neuroscience, 7:1289–1297 (1982).CrossRefGoogle Scholar
  5. Folch, J., Lees, M. and Sloane-Stanley, G. H., A simple method for the isolation and purification of total lipids from animal tissues, J Biol Chem, 226:497–509 (1957).Google Scholar
  6. Fonnum, F., Glutamate: a neurotransmitter in mammalian brain, J Neurochem, 42:1–11 (1984).CrossRefGoogle Scholar
  7. Freeman, C. P. and West, D., Complete separation of lipid classes on a single thin-layer plate, J Lipid Res, 7:324–327 (1966).Google Scholar
  8. Hajos, F., Wilkin, G., Wilson, J. and Balazs, R., A rapid procedure for obtaining a preparation of large fragments of the cerebellar glomeruli in high purity, J Neurochem, 24:1277–1278 (1975).CrossRefGoogle Scholar
  9. Hedqvist, P., Autonomic neurotransmission, in: “The Prostaglandins,” Plenum Press, New York (1973).Google Scholar
  10. Kan, K., Chao, L. and Forno, L., Immunohistochemical localization of choline acetyltransferase in the human cerebellum, Brain Res, 193:165–171 (1980).CrossRefGoogle Scholar
  11. Kelleher, J. A. and Sun, G. Y., Enzymic hydrolysis of arachidonylphospholi-pids by rat brain synaptosomes, Neurochem Int, 7:825–831 (1985).CrossRefGoogle Scholar
  12. Kelly, J. S., Fabienne, D. and Schon, F., The autoradiographic localization of the GABA-releasing nerve terminals in cerebellar glomeruli, Brain Res, 85:225–259 (1975).CrossRefGoogle Scholar
  13. Lazarewicz, J. W., Leu, V., Sun, G. Y. and Sun, A. Y., Arachidonic acid release from K+-evoked depolarization of brain synaptosomes, Neurochem Int, 5:471–478 (1983).CrossRefGoogle Scholar
  14. Levi, G., Release of putative transmitter amino acids, in: “Handbook of Neu-rochemistry,” Plenum Press, New York (1984).Google Scholar
  15. Levi, G., Gordon, R. D., Gallo, V., Wilkin, G. P. and Balazs, R., Putative acidic amino acid transmitters in the cerebellum I. depolarization-induced release, Brain Res, 239:425–445 (1982).CrossRefGoogle Scholar
  16. Levi, G. and Raiteri, M., GABA and glutamate uptake by subcellular fractions enriched in synaptosomes: critical evaluation of some methodological aspects, Brain Res, 57:165–185 (1973).CrossRefGoogle Scholar
  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with Folin phenol reagent, J Biol Chem, 193:265–275 (1951).Google Scholar
  18. Majewska, M. D. and Sun, G. Y., Activation of arachidonylphosphatidylinosi-tol and phosphatidylcholine turnover by K-evoked stimulation of brain synaptosomes, Neurochem Int, 4:427–433 (1982).CrossRefGoogle Scholar
  19. Myers, R. F. and Siegel, M. I., Differential effects of anti-inflammatory drugs on lipoxygenase and cyclooxygenase activities of neutrophils from a reverse passive Arthus reaction, Biochem Biophys Res Commun, 112:586–594 (1983).CrossRefGoogle Scholar
  20. Potashner, S. J. and Gerard, D., Kainate-enhanced release of D-[ H]-aspartate from cerebral cortex and striatum: reversal by baclofen and pentobarbital, J Neurochem, 40:1548–1557 (1983).CrossRefGoogle Scholar
  21. Raiteri, M., Angelini, F. and Levi, G., A simple apparatus for studying the release of neurotransmitters from synaptosomes, Eur J Pharmacol, 25:411–414 (1974).CrossRefGoogle Scholar
  22. Rhoads, D. E., Osburn, L. D., Peterson, N. A. and Raghupathy, E., Release of neurotransmitter amino acids from synaptosomes: enhancement of calcium-independent efflux by oleic and arachidonic acids, J. Neurochem, 41:531–537 (1983).CrossRefGoogle Scholar
  23. Sandoval, M. E., Sodium-dependent efflux of [3H]GABA from synaptosomes probably related to mitochondrial calcium mobilization, J Neurochem, 35: 915–921 (1980).CrossRefGoogle Scholar
  24. Terrian, D. M., Butcher, W. I., Wu, P. H. and Armstrong, D. L., Isolation of glomeruli from areas of bovine cerebullum and comparison of [3H]sero-onin uptake, Brain Res, 14:469–475 (1985).Google Scholar
  25. Terrian, D. M., Noison, E. L. and Thomas, W. E., Choline uptake by glomeru-ar synapses isolated from bovine cerebellar vermis, Brain Res, in press (1986).Google Scholar
  26. Tolman, E. L., Fuller, B. L., Marinan, B. A., Capetola, R. J., Levinson, S. L. and Rosenthale, M. E., Tissue selectivity and variability of effects of acetaminophen on arachidonic acid metabolism, Prostanglan-dins, Leukotriends Med., 12:347–356 (1983).Google Scholar
  27. Vanderhoek, J. Y. and Bailey, J. M., Postphospholipase activation of lipoxygenase/leukotriene systems, in: “Prostaglandins, Leukotrienes and Lipoxins,” Plenum Press, New York (1985).Google Scholar
  28. Wilkin, G. P., Garthwaite, J. and Balazs, R., Putative acidic amino acid transmitters in the cerebellum II. electron microscopic localization of transport sites, Brain Res, 2AA:69–80 (1982).CrossRefGoogle Scholar
  29. Wilkin, G., Wilson, J. E., Balazs, R., Schon, F. and Kelly, J. S., How selective is high affinity uptake of GABA into inhibitory nerve terminals?, Nature, 252:397–399 (1974).CrossRefGoogle Scholar
  30. Wilson, J. E., Wilkin, G. P. and Balazs, R., Metabolic properties of a purified preparation of large fragments of the cerebellar glomeruli: glucose metabolism and amino acid uptake, J. Neurochem, 26:957–965 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • David M. Terrian
    • 1
  • Scott B. Bischoff
    • 1
  • Monica A. Schwartz
    • 2
  • Robert V. Dorman
    • 2
  1. 1.USAF School of Aerospace Medicine, Neurosciences FunctionBrooks AFBUSA
  2. 2.Department of Biological SciencesKent State UniversityKentUSA

Personalised recommendations