Advertisement

Expression of Rat Brain Excitatory Amino Acid Receptors in Xenopus Oocytes

  • Richard A. Lampe
  • Leonard G. Davis
  • Michael J. Gutnick
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)

Summary

Xenopus laevis oocytes when injected with rat brain mRNA synthesize neuronal receptors that can be analyzed electrophysiologically. After a post-injection incubation period of 24–72 hours, L-glutamic acid, kainic acid and quisqualic acid caused a dose dependent (10–100 μM) depolarization of the oocyte membrane. The voltage and conductance changes associated with kainate activation were distinguishable from those seen for L-glutamate or quisqualate. There was no response to L-aspartate application and an inconsistent response to N-methyl-D-aspartate.

Upon fractionation of the mRNA on sucrose gradients, transcripts greater than 2 Kb in length were obligatory for the synthesis of excitatory amino acid receptors. The electrophysiological response of injected oocytes exposed to L-glutamate was similar to that of native oocytes when exposed to muscarinic agents. This similarity may reflect the activation of the same ionophore and suggests that the active mRNA fraction for glutamate responsiveness either encodes for a binding protein that can be assembled along with native ion channels into the oocyte membrane or encodes for a glutamate binding site with a similar channel.

Keywords

Acetylcholine Receptor Xenopus Oocyte Excitatory Amino Acid Xenopus Laevis Oocyte Excitatory Amino Acid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aviv, H. and Leder, P., Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose, Proc. Natl. Acad. Sci. USA 69:1408–1412 (1972).CrossRefGoogle Scholar
  2. Baldino, F., Jr., Wolfson, B., Heinemann, U. and Gutnick, M. J., An n-methyl-d-aspartate (NMDA) receptor antagonist reduces bicuculline-induced depolarization shifts in neocortical expiant cultures, Neuroscience Lett. 70:101–105 (1986).CrossRefGoogle Scholar
  3. Claudio, T., Ballivet, M., Patrick, J. and Heinemann, S., Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ subunit, Proc. Natl. Acad. Sci. USA 80:1111–1115 (1983).CrossRefGoogle Scholar
  4. Conti-Tronconi, B. M., Hunkapiller, M. W., Lindstrom, J. M. and Raftery, M. A., Subunit structure of the acetylcholine receptor from Electrophorus electricus, Proc. Natl. Acad. Sci. USA 79:6489–6493 (1982).CrossRefGoogle Scholar
  5. Davis, L. G., Dibner, M. D. and Battey, J. F., Guanidine isothiocyanate preparation of total RNA. In: Basic Methods in Molecular Biology, Elsevier (New York), pp. 130–135 (1986).Google Scholar
  6. Devillers-Thiery, Giraudat, A. J., Bentaboulet, M. and Changeux, J. P., Complete mRNA coding sequence of acetylcholine binding orsubunit of Torpedo marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. USA 80:2067–2071 (1983).CrossRefGoogle Scholar
  7. Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dolhman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Duhl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J. and Strader, C. D., Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin, Nature 321:75–79 (1986).CrossRefGoogle Scholar
  8. Dumont, J. N., Oogenesis in Xenopus laevis (Daudin), J. Morphol. 136:153–180 (1972).CrossRefGoogle Scholar
  9. Foster, R. C. and Fagg, G. E., Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors, Brain Res. Rev. 7:103–164 (1984).CrossRefGoogle Scholar
  10. Gundersen, C. B., M ledi, R. and Parker, I., Messenger RNA from human brain induces drug — and voltage — operated channels in Xenopus oocytes, Nature 308:421–424 (1984).CrossRefGoogle Scholar
  11. Gurdon, J. B., Lane, C. D., Woodland, H. R. and Marbaix, G., Use of frog eggs and oocytes for the study of messenger mRNA and its translation in living cells, Nature 233:177–182 (1971).CrossRefGoogle Scholar
  12. Hablitz, J. J. and Langmoen, I. A., N-methyl-d-aspartate receptor antagonists reduce synaptic excitation in the hippocampus, J. Neurosci. 6: 102–106 (1986).Google Scholar
  13. Houamed, K. M., Bilbe, G., Smart, T. G., Constante, A., Brown, D. A., Barnard, E. A. and Richards, B. M., Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA, Nature 310:318–321 (1984).CrossRefGoogle Scholar
  14. Karlin, A., Molecular properties of nicotinie acetylcholine receptors. In: The Cell Surface and Neuronal Function, edited by C. W. Cotman, G. Poste, and G. L. Nicolson, Amsterdam: Elsevier/North Holland Biomedical Press, pp. 191–260 (1980).Google Scholar
  15. Kubo, T., Kuzuhiko F., Mikami, R., Maeda, A., Takahashi, H., Mishina, M., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Koyima, M., Matsuo, H., Hirose, T. and Numa, S., Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor, Nature 323: 411–416 (1986).CrossRefGoogle Scholar
  16. Kusano, K., Miledi, R. and Stinnakre, J., Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane, J. Physiol. 328:143–170 (1982).Google Scholar
  17. Labarco, C. and Paigen, K., mRNA-directed synthesis of catalytically active mouse β-glucuronidase in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 74:4462–4466 (1977).CrossRefGoogle Scholar
  18. Lynch, G. and Baudry, M., The biochemistry of memory: A new and specific hypothesis, Science 224:1057–1063 (1984).CrossRefGoogle Scholar
  19. Mayer, M. L., Westbrook, G. L. and Guthrie, P. B., Voltage-dependent block by Mg++ of NMDA responses in spinal cord neurones, Nature 309:261–263 (1984).CrossRefGoogle Scholar
  20. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M. and Numa, S., Location of functional regions of acetylcholine receptor or subunit by site-directed mutagenesis, Nature 313:364–369 (1985).CrossRefGoogle Scholar
  21. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kibyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. and Numa, S., Structural homology of torpedo californica acetylcholine receptor sub-units, Nature 302:528–532 (1983).CrossRefGoogle Scholar
  22. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. and Prochiantz, A., Magnesium gates glutamate-activated channels in mouse central neurones, Nature 307:462–465 (1984).CrossRefGoogle Scholar
  23. Oron, Y., Dascal, N., Nadler, E. and Lupu, M., Inositol 1, 4, 5-trisphosphate mimics muscarinic response in Xenopus oocytes, Nature 313:141–143 (1985).CrossRefGoogle Scholar
  24. Parker, I., Sumikawa, K. and Miledi, R., Messenger RNA from bovine retina induces baumate and glycine receptors in Xenopus oocytes, Proc. R. Soc. Lond. B225:99–106 (1985).CrossRefGoogle Scholar
  25. Pure, E., Luster, A. D. and Unkeless, J. C., Cell surface expression of murine, rat, and human Fc receptors by Xenopus oocytes, J. Exp. Med. 160:606–611 (1984).CrossRefGoogle Scholar
  26. Robinson, R. R., Germain, R. N., McKean, D. J., Mescher, M. and Seidman, J. G., Extensive polymorphism surrounding the murine La αβ chain gene, J. Immun. 131:2025–2031 (1983).Google Scholar
  27. Simmen, F. A., Schulz, T. A., Headon, D. R., Wright, D. A., Carpenter, G. and O’Malley, B. W., Translation in Xenopus oocytes of messenger RNA from A431 cells for human epidermal growth factor receptor proteins, DNA 3:393–399 (1984).CrossRefGoogle Scholar
  28. Soreq, H., Parvari, R. and Silman, I., Biosynthesis and secretion of catalytically active acetylcholinesterase in Xenopus oocytes microinjected with mRNA from rat brain and from Torpedo electric organ, Proc. Natl. Acad. Sci. USA 79:830 (1982).CrossRefGoogle Scholar
  29. Soreq, H., The biosynthesis of biologically active proteins in m-RNA micro-injected Xenopus oocytes, CRC Critical Rev. in Biochem. 18:199–238 (1985).CrossRefGoogle Scholar
  30. Sumikawa, K., Houghton, M., Emtage, J. S., Richards, B. M. and Barnard, E. A., Active multi-subunit acetylcholine receptor assembly by translation of heterologous mRNA in Xenopus oocytes, Nature 292:862–864 (1981).CrossRefGoogle Scholar
  31. Simikawa, K., Parker, I. and Miledi, R., Partial purification and functional expression of brain mRNA coding for neurotransmitter receptors and voltage-operated channels, Proc. Natl. Acad. Sci. USA 81:7994–7998 (1984).CrossRefGoogle Scholar
  32. Sumikawa, K., Houghton, M., Smith, J. C., Belll, L., Richards, B. M. and Barnard, E. A., The molecular cloning and characterization of cDNA coding for the α subunit of the acetylcholine receptor, Nucl. Acid Res. 10:5809–5822 (1982).CrossRefGoogle Scholar
  33. Wieloch, T., Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist, Science 230:681–683 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Richard A. Lampe
    • 1
  • Leonard G. Davis
    • 1
  • Michael J. Gutnick
    • 1
  1. 1.Neurobiology Group, Medical Products DepartmentE. I. du Pont de Nemours and CompanyWilmingtonUSA

Personalised recommendations