Phosphorylation and Dephosphorylation of Neurofilament Proteins in Retinal Ganglion Cell Neurons In Vivo

  • R. A. Nixon
  • Susan E. Lewis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


The cytoskeleton of most higher eukaryotic cells is composed of three filamentous systems, which serve varying dynamic and structural roles in cellular function. Two of these systems, the 80 Å microfilaments and the 230 Å microtubules, are composed of subunit proteins that are phylogenetically highly conserved. By contrast, the 100 Å intermediate filaments are encoded by a large multigene family, the members of which are differentially expressed in different tissues (Fuchs and Hanukoglu, 1983). On the basis of biochemical and immunological criteria, five major classes of intermediate filaments have been defined (Lazarides, 1980). These include keratin filaments, found in cells of epithelial origin; desmin filaments, predominantly found in smooth, skeletal and cardiac muscle cells; vimentin filaments, present in cells of mesenchymal origin; glial filaments, constituents of certain glial cell types; and neurofilaments, present in many differentiated neurons of vertebrates and invertebrates. This classification emphasizes the tissue specificity of intermediate filaments, although it is now known that subunits from more than one class may coexist in some tissues at certain developmental stages (Osborn et al., 1980; Drager, 1983).


Optic Nerve Phosphate Group Intermediate Filament Intravitreal Injection Optic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. M., Structural studies on human spectrin: Comparison of sub-units and fragmentation of native spectrin, J. Biol. Chem. 254:939–944 (1979).Google Scholar
  2. Bennett, G. S. and DiLullo, C., Slow posttranslational modification of a neurofilament protein, J. Cell Biol. 100:1799–1804 (1985).CrossRefGoogle Scholar
  3. Bennett, V. and Stenbuck, P. J., Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin, J. Biol. Chem. 254:2533–2541 (1979).Google Scholar
  4. Black, M. M. and Lasek, R. J., Slow components of axonal transport: Two cytoskeletal networks, J. Cell Biol. 86:616–623 (1980).CrossRefGoogle Scholar
  5. Brown, B. A., Majocha, R. E., Staton, D. M. and Marotta, C. A., Axonal polypeptides cross-reactive with antibodies to neurofilament protein, J. Neurochem. 40:299–308 (1983).CrossRefGoogle Scholar
  6. Brown, B. A., Nixon, R. A., Strocchi, P. and Marotta, C. A., Characterization and comparison of neurofilament proteins from rat and mouse CNS, J. Neurochem. 36:143–153 (1981).CrossRefGoogle Scholar
  7. Brown, B. A., Nixon, R. A. and Marotta, C. A., Posttranslational processing of a-tubulin during axoplasmic transport in CNS axons, J. Cell Biol. 94: 159–164 (1982).CrossRefGoogle Scholar
  8. Carden, M. J., Schlaepfer, W. W. and Lee, V. M.-Y., The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state, J. Biol. Chem. 260:9805–9817 (1985).Google Scholar
  9. Chiu, F.-C. and Norton, W. T., Bulk preparation of CNS cytoskeleton and the separation of individual neurofilament proteins by gel filtration: Dye-binding characteristics and amino acid compositions, J. Neurochem. 39: 1252–1260 (1982).CrossRefGoogle Scholar
  10. Chiu, F.-C, Goldman, J. E. and Norton, W. T., Biochemistry of neurofilaments, in: “Neurofilaments,” C. A. Marotta, ed., University of Minnesota Press, Minneapolis, pp. 27–56 (1983).Google Scholar
  11. Cooper, N. G. F., McLaughlin, B. J., Tallant, E. A. and Cheung, W. Y., Calmodulin-dependent protein phosphatase: Immunocytochemical localization in chick retina, J. Cell Biol. 101:1212–1218 (1985).CrossRefGoogle Scholar
  12. Cork, L. C., Sternberger, N. H., Sternberger, L. A., Casanova, M. F., Struble, R. G. and Price, D. L., Phosphorylated neurofilament antigens in neurofibrillary tangles in Alzheimer’s disease, J. Neuropath. Exptl. Neurol. 45:56–64 (1986).CrossRefGoogle Scholar
  13. Correas, I., Leto, T. L., Speicher, D. W. and Marchesi, V. T., Identification of the functional site of erythrocyte protein 4.1 involved in spectrin-actin associations, J. Biol. Chem. 261:3310–3315 (1986).Google Scholar
  14. Dahl, D., Immunohistochemical differences between neurofilaments in peri-karya, dendrites and axons. Immunofluorescence study with antisera raised to neurofilament polypeptides (200 K, 150K, 70K) isolated by anion exchange chromatography, Exp. Cell Res. 149:397–408 (1983).CrossRefGoogle Scholar
  15. Dahl, D. and Bignami, A., Preparation of antisera to neurofilament protein from chicken brain and human sciatic nerve, J. Comp. Neurol. 176:645–657 (1977).CrossRefGoogle Scholar
  16. Drager, U. C., Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina, Nature 303:169–172 (1983).CrossRefGoogle Scholar
  17. Drager, U. C., Edwards, D. L. and Barnstable, C. J., Antibodies against filamentous components in discrete cell types of the mouse retina, J. Neurosci. 4:2025–2042 (1984).Google Scholar
  18. Drager, U. C. and Hofbauer, A., Antibodies to heavy neurofilament subunit detect a subpopulation of damaged ganglion cells in retina, Nature 309: 624–626 (1984).CrossRefGoogle Scholar
  19. Fischer, I., Shea, T. B., Sapirstein, V. S. and Kosik, K. S., Expression and distribution of microtubule-associated protein 2 (MAP2) in neuroblastoma and primary neuronal cells, Dev. Brain Res. 25:99–109 (1986).CrossRefGoogle Scholar
  20. Fuchs, E. and Hanukoglu, I., Unraveling the structure of the intermediate filaments, Cell 34:332–334 (1983).CrossRefGoogle Scholar
  21. Geisler, N. and Weber, K., Self-assembly in vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate-sized filaments, J. Mol. Biol. 151:565–571 (1981).CrossRefGoogle Scholar
  22. Geisler, N., Kaufman, E., Fischer, S., Plessman, U. and Weber, K., Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins, EMBO J. 2:1295–1302 (1983).Google Scholar
  23. Gilmartin, M. E., Mitchell, J., Vidrich, A. and Freedberg, I. M., Dual regulation of intermediate filament phosphorylation, J. Cell Biol. 98:1144–1149 (1984).CrossRefGoogle Scholar
  24. Goodman, S. R. and Zagon, I. S., Brain spectrin: A review, Brain Res. Bull. 13:813–832 (1984).CrossRefGoogle Scholar
  25. Goodman, S. R., Zagon, I. S., Whitfield, C. F., Casoria, L. A., Shohet, S. B., Bernstein, S. E., McLaughlin, P. J. and Laskiewicz, T. L., A spec-trin-like protein from mouse brain membranes: Phosphorylation of the 235,000-dalton subunit, Am. J. Physiol. 247 (Cell Physiol. 16):C61–C73 (1984).Google Scholar
  26. Goto, S., Yamamoto, H., Fukunaga, K., Iwasa, T., Matsukado, Y. and Miyamoto, E., Dephosphorylation of microtubule-associated protein, τfactor, and tubulin by calcineurin, J. Neurochem. 45:276–283 (1985).CrossRefGoogle Scholar
  27. Heimann, R., Shelanski, M. L. and Liem, R. K. H., Microtubule-associated proteins bind specifically to the 70-kDa neurofilament protein, J. Biol. Chem. 260:12160–12166 (1985).Google Scholar
  28. Hirokawa, N., Glicksman, M. A. and Willard, M. B., Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol. 98:1523–1536 (1984).CrossRefGoogle Scholar
  29. Hoffman, P. N. and Lasek, R. J., The slow component of axonal transport: Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66:351–366 (1975).CrossRefGoogle Scholar
  30. Huttner, W. B., Schiebler, W., Greengard, P. and de Camilli, P., Synapsin (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation, J. Cell Biol. 96:1374–1388 (1983).CrossRefGoogle Scholar
  31. Jameson, L. and Caplow, M., Modification of microtubule steady-state dynamics by phosphorylation of the microtubule-associated proteins, Proc. Natl, Acad, Sci. USA 78:3413–3417 (1981).CrossRefGoogle Scholar
  32. Jameson, L. Frey, T., Zeeberg, B., Dalldorf, F. and Caplow, M., Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins, Biochemistry 19:2472–2479 (1980).CrossRefGoogle Scholar
  33. Jones, S. M. and Williams, R. C., Jr., Phosphate content of mammalian neurofilaments, J. Biol. Chem. 257:9902–9905 (1982).Google Scholar
  34. Julien, J.-P. and Mushynski, W. E., Multiple phosphorylation sites in mammalian neurofilament polypeptides, J. Biol. Chem. 257:10467–10470 (1982).Google Scholar
  35. Julien, J.-P., Smoluk, G. D. and Mushynski, W. E., Characteristics of the protein kinase activity associated with rat neurofilament preparations, Biochim. Biophys. Acta 755:25–31 (1983).CrossRefGoogle Scholar
  36. Kaufmann, E., Geisler, N. and Weber, K., SDS-PAGE strongly overestimates the molecular masses of the neurofilament proteins, FEBS Lett. 170:81–84 (1984).CrossRefGoogle Scholar
  37. King, M. M., Huang, C. Y., Chock, P. F., Nairn, A. C., Hemmings, H. C., Jr., Chan, K.-F. J. and Greengard, P., Mammalian brain phosphoproteins as substrates for calcineurin, J. Biol. Chem. 259:8080–8083 (1984).Google Scholar
  38. Lazarides, E., Intermediate filaments as mechanical integrators of cellular space, Nature 283:249–256 (1980).CrossRefGoogle Scholar
  39. Leterrier, J.-F., Liem, R. K. H. and Shelanski, M. L., Preferential phosphorylation of the 150,000 molecular weight component of neurofilaments by a cyclic AMP-dependent microtubule-associated protein kinase, J. Cell Biol. 90:755–760 (1981).CrossRefGoogle Scholar
  40. Levine, J. and Willard, M., Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells, J. Cell Biol. 90:631–643 (1981).CrossRefGoogle Scholar
  41. Lewis, S. E. and Nixon, R. A., Microheterogeneity of the 200,000 dalton neurofilament protein (NFP), Trans. Amer. Soc. Neurochem. 16:245 (1985).Google Scholar
  42. Liem, R. K. H. and Hutchison, S. B., Purification of individual components of the neurofilament triplet: Filament assembly from the 70,000-dalton subunit, Biochemistry 21:3221–3226 (1982).CrossRefGoogle Scholar
  43. Liem, R. K. H., Yen, S.-H., Salomon, G. D. and Shelanski, M. L., Intermediate filaments in nervous tissue, J. Cell Biol. 79:637–645 (1978).CrossRefGoogle Scholar
  44. Lu, P.-W., Soong, C.-J. and Tao, M., Phosphorylation of ankyrin decreases its affinity for spectrin tetramer, J. Biol. Chem. 260:14958–14964 (1985).Google Scholar
  45. Murthy, A. S. N. and Flavin, M., Microtubule assembly using the microtubule-associated protein MAP-2 prepared in defined states of phosphorylation with protein kinase and phosphatase, Eur. J. Biochem. 137:37–46 (1983).CrossRefGoogle Scholar
  46. Nestler, E. J. and Greengard, P., “Protein Phosphorylation in the Nervous System,” John Wiley and Sons, New York (1984).Google Scholar
  47. Nishida, E., Kuwaki, T. and Sakai, H., Phosphorylation of microtubule-associated proteins (MAPs) and pH of the medium control interaction between MAPs and actin filaments, J. Biochem. 90:575–578 (1981).Google Scholar
  48. Nixon, R. A., Proteolysis of neurofilaments, in: “Neurofilaments,” C. A. Marotta, ed., University of Minnesota Press, Minneapolis, pp. 117–154 (1983).Google Scholar
  49. Nixon, R. A., Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: Preferential localization of CANP activities in neurons, J. Neurosci. 6:1264–1271 (1986).Google Scholar
  50. Nixon, R. A. and Lewis, S. E., Differential rates of phosphate turnover on neurofilament subunits in retinal ganglion cell neurons in vivo (submitted for publication) (1986).Google Scholar
  51. Nixon, R. A. and Logvinenko, K. B., Multiple fates of newly synthesized neurofilament proteins: Evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons, J. Cell Biol. 102:647–659 (1986).CrossRefGoogle Scholar
  52. Nixon, R. A., Brown, B. A. and Marotta, C. A., Posttranslational modification of a neurofilament protein during axoplasmic transport: Implications for regional specialization of CNS axons, J. Cell Biol. 94:150–158 1982).CrossRefGoogle Scholar
  53. Nixon, R. A., Lewis, S. E., Dahl, D. and Marotta, C. A., Early stages in the posttranslational modification of neurofilament proteins by phosphate in retinal ganglion cell neurons. Submitted for publication (1986).Google Scholar
  54. Nixon, R. A., Lewis, S. E. and Marotta, C. A., Posttranslational modification of neurofilament proteins by phosphate during axoplasmic transport in retinal ganglion cell neurons in vivo (submitted) (1986).Google Scholar
  55. O’Connor, C. M., Gard, D. L. and Lazarides, E., Phosphorylation of intermediate filament proteins by cAMP-dependent protein kinases, Cell 23:135–143 (1981).CrossRefGoogle Scholar
  56. Osborn, M., Franke, W. and Weber, K., Direct demonstration of the presence of two immunologically distinct intermediate-sized filament systems in the same cell by double immunofluorescence microscopy: Vimentin and cytokeratin fibers in cultured epithelial cells, Exptl. Cell Res. 125: 37–46 (1980).CrossRefGoogle Scholar
  57. Pant, H. C., Gallant, P. E. and Gainer, H., Characterization of a cyclic nucleotide-and calcium-independent neurofilament protein kinase activity in axoplasm from the squid giant axon, J. Biol. Chem. 261:2968–2977 (1986).Google Scholar
  58. Seiden, S. C. and Pollard, T. D., Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments, J. Biol. Chem. 258:7064–7017, (1983).Google Scholar
  59. Sharp, G. A., Shaw, G. and Weber, K., Immunoelectronmicroscopical localization of the three neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurones, Exp. Cell Res. 137:403–413 (1982).CrossRefGoogle Scholar
  60. Shecket, G. and Lasek, R. J., Neurofilament protein phosphorylation. Species generality and reaction characteristics, J. Biol. Chem. 257:4788–4795 (1982).Google Scholar
  61. Shelanski, M. L. and Liem, R. K. H., Neurofilaments, J. Neurochem. 33:5–13 (1979).CrossRefGoogle Scholar
  62. Siman, R. and Lynch, G., Fodrin: Skeletal protein cross-linker in rat brain subcellular fractions, Neurosci. Abstr. 185: Vol. 11, p. 775 (1985).Google Scholar
  63. Steinert, P. M., Wantz, M. L. and Idler, W. W., O-phosphoserine content of intermediate filament subunits, Biochemistry 21:177–183 (1982).CrossRefGoogle Scholar
  64. Steinert, P. M., Steven, A. C. and Roop, D. R., The molecular biology of intermedite filament, Cell 42:411–419 (1985).CrossRefGoogle Scholar
  65. Sternberger, L. A. and Sternberger, N. H., Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms in situ, Proc. Natl. Acad. Sci. USA 80:6126–6130 (1983).CrossRefGoogle Scholar
  66. Strocchi, P., Dahl, D. and Gilbert, J. M., Studies on the biosynthesis of intermediate filament proteins in the rat CNS, J. Neurochem. 39:1132–1141 (1982).CrossRefGoogle Scholar
  67. Tallant, E. A. and Cheung, W. Y., Calmodulin-dependent protein phosphatase: A developmental study, Biochemistry 22:3630–3635 (1983).CrossRefGoogle Scholar
  68. Theurkauf, W. E. and Vallee, R. B., Extensive cAMP-dependent and cAMP-inde-pendent phosphorylation of microtubule-associated protein 2, J. Biol. Chem. 2587883–7886 (1983).Google Scholar
  69. Troncoso, J. C., Sternberger, N. H., Sternberger, L. A., Hoffman, P. N. and Price, D. L., Immunocytochemical studies of neurofilament antigens in the neurofibrillary pathology induced by aluminum, Brain Res. (in press) (1986).Google Scholar
  70. Wallace, R. W., Tallant, E. A. and Cheung, W. Y., High levels of a heat-labile calmodulin-binding protein (CaM-BP80) in bovine neostriatum, Biochemistry 19:1831–1837 (1980).CrossRefGoogle Scholar
  71. Wang, E., Intermediate filament associated proteins, in: “Intermediate Filaments,” E. Wang, D. Fischman, R. K. H. Liem, and T.-T. Sun, eds., Ann. N. Y. Acad. Sci. 455:32–56 (1985).Google Scholar
  72. Weaver, D. C., Pasternack, G. R. and Marchesi, V. T., The structural basis of ankyrin function: II. Identification of two functional domains, J. Biol. Chem. 259:6170–6175 (1984).Google Scholar
  73. Weber, K., Shaw, G., Osborn, M., Debus, E. and Geisler, W., Neurofilaments, a subclass of intermediate filaments: Structure and expression, Cold Spring Harbor Symp. Quant. Biol. 48:717–729 (1983).CrossRefGoogle Scholar
  74. Willard, M., Neurofilaments and axonal transport, in: “Neurofilaments,” C. A. Marotta, ed., University of Minnesota Press, Minneapolis, pp. 86–116 (1983).Google Scholar
  75. Willard, M. and Simon, C., Antibody decoration of neurofilaments, J. Cell Biol. 89:198–205 (1981).CrossRefGoogle Scholar
  76. Wong, J., Hutchison, S. F. and Liem, R. K. H., An isoelectric variant of the 150,000-dalton neurofilament polypeptide. Evidence that phosphorylation state affects its association with the filament, J. Biol. Chem. 259: 10867–10874 (1984).Google Scholar
  77. Yang, S.-D. and Fong, Y.-L., Identification and characterization of an ATP MG-dependent protein phosphatase from pig brain, J. Biol. Chem. 260: 13464–13470 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. A. Nixon
    • 1
    • 2
  • Susan E. Lewis
    • 1
    • 2
  1. 1.Ralph Lowell Laboratories, Mailman Research CenterMcLean HospitalBelmontUSA
  2. 2.Department of Psychiatry and Program in NeuroscienceHarvard Medical SchoolBostonUSA

Personalised recommendations