Synapsin I, A Phosphoprotein Associated with Synaptic Vesicles: Possible Role in Regulation of Neurotransmitter Release

  • Paul Greengard
  • Michael D. Browning
  • Teresa L. McGuinness
  • Rodolfo Llinas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 221)


Elucidation of the molecular events underlying communication between neurons is one of the most exciting problems in neuroscience. While it has been known for many years that the depolarization-dependent influx of calcium into the presynaptic terminal leads to the release of neurotransmitters, little is known about the molecular events which underly this presynaptic process. Similarly, although neurotransmitters are known to produce graded responses via interaction with specific receptors, little is known about the molecular events which underlie these postsynaptic responses. Although it has been generally assumed that protein molecules play important roles in the production of these responses, it is only within the last 15 years that we have come to understand how the activity of proteins could be regulated with a time course consistent with mediation or modulation of neuronal communication. What has become apparent during this period is that protein phosphorylation is a primary mechanism utilized by eukaryotic cells for post-translational regulation of protein function. Consequently, protein phosphorylation represents a conceptual framework for analysis of the molecular mechanisms which underly neuronal communcation. The scheme shown in Figure 1 summarizes our current concepts about the molecular pathways underlying biological regulation of neuronal communication.


Synaptic Vesicle Protein Phosphorylation Dependent Protein Kinase Calmodulin Kinase Rhodopsin Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, W. B. and Levitan, I. B., Intracellular injection of protein kinase inhibitor blocks the serotonin-induced increase of K+ conductance in Aplysia neuron R 15, Proc. Natl. Acad. Sci. USA 79:3877–3880 (1982).CrossRefGoogle Scholar
  2. Aitken, A., Bilham, T., Cohen, P., Aswad, D., and Greengard, P., A specific substrate from rabbit cerebellum for guanosine 3′:5′ monophosphate-dependent protein kinase. III. Amino acid sequences at the two phosphorylation sites, J. Biol. Chem. 256:3501–3506 (1981).Google Scholar
  3. Albert, K. A., Wu, W. C. S., Nairn, A. C., and Greengard, P., Inhibition by calmodulin of calcium/phospholipid-dependent protein phosphorylation, Proc. Natl. Acad. Sci. USA 81:3622–3625 (1984).CrossRefGoogle Scholar
  4. Alkon, D. L., Acosta-Urguidi, J., Olds, J., Kuzma, G., and Neary, J. T., Protein kinase injection reduces voltage-dependent potassium currents, Science 219:303–306 (1983).CrossRefGoogle Scholar
  5. Aswad, D. and Greengard, P., A specific substrate from rabbit cerebellum for guanosine 3′:5′-monophosphate-dependent protein kinase. I. Purification and characterization, J. Biol. Chem. 256:3487–3493 (1981a).Google Scholar
  6. Aswad, D. and Greengard, P., A specific substrate from rabbit cerebellum for guanosine 3′:5′-monophosphate-dependent protein kinase. II. Kinetic studies on its phosphorylation by guanosine 3′:5′-monophosphate-dependent and adenosine 3′:5′-monophosphate-dependent protein kinase, J. Biol. Chem. 256:3494–3500 (1981b).Google Scholar
  7. Barnekow, A., Schartl, M., Anders, F., and Bauer, H., Identification of a fish protein associated with a kinase activity and related to the Rous sarcoma virus transforming protein, Cancer Research 42:2429–2433 (1982).Google Scholar
  8. Browning, M. D., Dunwiddie, T., Bennett, W., Gispen, W. H., and Lynch G., Synaptic phosphoproteins: Specific changes after repetitive stimulation of the hippocampal slice, Science 203:60–62 (1979).CrossRefGoogle Scholar
  9. Browning, M. D. and Greengard, P., A family of synaptic vesicle-associated phosphoproteins: synapsin Ia, synapsin Ib, protein IIIa and protein IIIb, Soc. Neurosci. Abstr. 10:196 (1984).Google Scholar
  10. Browning, M. D., Baudry, M. and Lynch, G., Evidence that high frequency stimulation influences the phosphorylation of pyruvate dehydrogenase and that the activity of this enzyme is linked to mitochondrial calcium sequestration, Prog. Brain. Res. 56:317–338 (1982).CrossRefGoogle Scholar
  11. Browning, M. D., Huganir, R., and Greengard, P., Protein phosphorylation and neuronal function, J. Neurochem. 45:11–23 (1985).CrossRefGoogle Scholar
  12. Burgoyne, R. D., Regulation of the muscarinic acetylcholine receptor: effects of phosphorylating conditions on agonist and antagonist binding, J. Neurochem. 40:324–331 (1983).CrossRefGoogle Scholar
  13. Castellucci, V. F., Kandel, E. R., Schwartz, J. H., Wilson, F. D., Nairn, A. C., and Greengard, P., Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase stimulates facilitation of transmitter release underlying behavioral sensitization in Aplysia, Proc. Natl. Acad. Sci. USA 77:7492–7496 (1980).CrossRefGoogle Scholar
  14. Caudwell, B., Antoniw, J. F., and Cohen, P., Calsequestrin, mysosin, and the components of the protein-glycogen complex in rabbit skeletal muscle, Eur. J. Biochem. 86:511–518 (1978).CrossRefGoogle Scholar
  15. Cohen, P., The role of protein phosphorylation in neural and hormonal control of cellular activity, Nature 296:613–620 (1982).CrossRefGoogle Scholar
  16. Costa, M. R., Casnellie, J. E., and Catterall, W. A., Selective phosphorylation of the alpha subunit of the sodium channel by cAMP-dependent protein kinase, J. Biol. Chem. 257:7918–7921 (1982).Google Scholar
  17. Costa, M. R. C. and Catterall, W. A., Cyclic AMP-dependent phosphorylation of the α-subunit of the sodium channel in synaptic nerve ending particles, J. Biol. Chem. 259:8210–8218 (1984a).Google Scholar
  18. Costa, M. R. C. and Catterall, W. A., Phosphorylation of the a-subunit of the sodium channel by protein kinase C, Cellular and Molecular Neurobiology 4:291–297 (1984b).CrossRefGoogle Scholar
  19. Cotton, P. C. and Brugge, J. S., Neural tissues express high levels of the cellular src gene product pp60 c-src, Mol. and Cell Biol. 3:1157–1162 (1983).Google Scholar
  20. DeCamilli, P., Ueda, T., Bloom, F. E., Battenberg, E., and Greengard, P., Widespread distribution of protein I in the central and peripheral nervous system, Proc. Natl. Acad. Sci. USA 76:5977–5981 (1979).CrossRefGoogle Scholar
  21. DeCamilli, P., Cameron, R., and Greengard, P., Synapsin I (protein I), a nerve terminal-specific phosphoprotein: I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections, J. Cell Biol. 96: 1337–1354 (1983).CrossRefGoogle Scholar
  22. DeCamilli, P., Harris, S. M., Huttner, W. B., and Greengard, P., Synapsin I (Protein I), a nerve terminal-specific phosphoprotein: II. Its specific association with synaptic vesicles demonstrated by immunocyto-chemistry in agarose embedded synaptosomes, J. Cell Biol. 96:1355–1373 (1983).CrossRefGoogle Scholar
  23. de Jonge, H. R. and Rosen, O. M., Self-phosphorylation of cyclic guanosine 3′:5′-monophosphate-dependent protein kinase from bovine lung, J. Biol. Chem. 252:2780–2783 (1977).Google Scholar
  24. Demaille, J. G. and Pechere, J.-F., The control of contractility by protein phosphorylation, Adv. Cyclic Nucleotide Res. 15:337–371 (1983).Google Scholar
  25. de Peyer, J. E., Cachelin, A. B., Levitan, I. B., and Reuter, H., Ca2+-activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation, Proc. Natl. Acad. Sci. USA 79: 4207–4211 (1982).CrossRefGoogle Scholar
  26. DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P., and Kaczmarek, L. K., Enhancement of calcium current in Aplysia neurons by phorbol ester and protein kinase C, Nature 313:313–316 (1985).CrossRefGoogle Scholar
  27. Dolphin, A. C. and Greengard, P., Serotonin stimulates phosphorylation of Protein I in the facial motor nucleus of rat brain, Nature 298:76–79 (1981a).CrossRefGoogle Scholar
  28. Dolphin, A. C. and Greengard, P., Neurotransmitter and neuromodulator-dependent alterations in phosphorylation of Protein I in slices of rat facial nucleus, J. Neurosci. 1:192–203 (1981b).Google Scholar
  29. Douglas, W. W. and Ritchie, J. M., A technique for recording functional activity in specific groups of myelinated and non-myelinated nerve trunks, J. Physiol. Lond. 138:19–30 (1957).Google Scholar
  30. Edelman, A. M., Raese, J. D., Lazar, M. A., and Barchase, J. D., Tyrosine hydroxylase: studies on the phosphorylation of a purified preparation of the brain enzyme by the cyclic AMP-dependent protein kinase, J. Pharmacol. Exp. Ther. 216:647–653 (1981).Google Scholar
  31. Ehrlich, Y. H., Whittemore, S. R., Garfield, M. K., Graber, S. G., and Lenox, R. H., Protein phosphorylation in the regulation and adaptation of receptor function, Prog. Brain Res. 56:375–396 (1982).CrossRefGoogle Scholar
  32. Forn, J. and Greengard, P., Depolarizing agents and cyclic nucleotides regulate the phosphorylation of specific neuronal proteins in rat cerebral cortex slices, Proc. Natl. Acad. Sci. USA 75:5195–5199 (1978).CrossRefGoogle Scholar
  33. Fried, G., Nestler, E. J., DeCamilli, P., Stjärne, L., Olson, L., Lundberg, J. M., Hökfelt, T., Ouimet, C. C., and Greengard, P., Cellular and subcellular localization of Protein I in the peripheral nervous system, Proc. Natl. Acad. Sci. USA 79:2717–2721 (1982).CrossRefGoogle Scholar
  34. Gispen, W. H. and Routtenberg, A., eds., Brain Phosphoproteins, Prog. in Brain Res., Vol 56, Elsevier, Amsterdam (1982).Google Scholar
  35. Goldenring, J. R., Gonzalez, B. and DeLorenzo, R. J., Isolation of brain Ca2+-calmodulin tubulin kinase containing calmodulin binding proteins, Biochem. Biophys. Res. Commun. 108:421–428 (1982).CrossRefGoogle Scholar
  36. Gordon, A. S., Davis, C. G., Milfay, D., and Diamond, I., Phosphorylation of acetylcholine receptor by endogenous membrane protein kinase in receptor-enriched membranes of Torpedo californica, Nature 267:539–540 (1977).CrossRefGoogle Scholar
  37. Gurley, L. R., D’Anna, J. A., Halleck, M. S., Barham, S. S., Walters, R. A., Jett, J. J., and Tobey, R. A., Relationships between histone phosphorylation and cell proliferation, Cold Spring Harbor Conf. Cell Prolif. 8:1073–1093 (1981).Google Scholar
  38. Hathaway, G. M. and Traugh, J. A., Casein kinases-multi-potential protein kinases, Curr. Top. Cell Reg. 21:101–127 (1982).Google Scholar
  39. Hemmings Jr., H. C., Nairn, A. C., Aswad, D. W., and Greengard, P., DARPP-32, a dopamine and adenosine 3′:5′-monophosphate-regulated phospho-protein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus, J. Neurosci. 4:99–110 (1984a).Google Scholar
  40. Hemmings Jr., H. C., Greengard, P., Tung, H. Y. L., and Cohen, P., DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1, Nature 310:503–505 (1984b).CrossRefGoogle Scholar
  41. Hemmings Jr., H. C., Walaas, S. I., Ouimet, C. C., and Greengard, P., “Structure and Function of Dopamine Receptors” in Receptor Biochemistry and Methodology, (eds. Creese, I. & Fraser, C. M.), vol. 9, Alan R. Liss, Inc., New York (1985).Google Scholar
  42. Hoch, D. B., Dingledine, R. J., and Wilson, J. E., Long-term potentiation in the hippocampal slice: possible involvement of pyruvate dehydrogenase, Brain Res. 302:125–134 (1984).CrossRefGoogle Scholar
  43. Hook, V. Y. H., Stokes, K. B., Lee, N. M., and Loh, H. H., Possible nuclear protein kinase regulation of homologous ribonucleic acid polymerases from small dense nuclei of mouse brain during morphine tolerance-dependence, Biochem. Pharmacol. 30:2313–2318 (1981).CrossRefGoogle Scholar
  44. Huang, C.-K., Browning, M. D., and Greengard, P., Purification and characterization of protein IIIb, a mammalian brain phosphoprotein, J. Biol. Chem. 257:6524–6528 (1982).Google Scholar
  45. Huganir, R. L., Miles, K., and Greengard, P., Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase, Proc. Natl. Acad. Sci. USA 81:6968–6972 (1984).CrossRefGoogle Scholar
  46. Huttner, W. B., DeGennaro, L. J., and Greengard, P., Differential phosphorylation of multiple sites in purified Protein I by cyclic AMP-depen-dent and calcium dependent-protein kinases, J. Biol. Chem. 256:1482–1488 (1981).Google Scholar
  47. Huttner, W. B., Schiebler, W., Greengard, P., and DeCamilli, P., Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation, J. Cell Biol. 96:1374–1388 (1983).CrossRefGoogle Scholar
  48. Joh, T. H., Park, D. H., and Reis, D. J., Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation, Proc. Natl. Acad. Sci. USA 75:4744–4748 (1978).CrossRefGoogle Scholar
  49. Johnson, E. M., Ueda, T., Maeno, H. and Greengard, P., Adenosine 3′:5′-monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum, J. Biol. Chem. 247: 5650–5652 (1972).Google Scholar
  50. Johnson, E. M., Nuclear protein phosphorylation and the regulation of gene expression, Handb. Exp. Pharmacol. 58:(Part I) 507–533 (1982).CrossRefGoogle Scholar
  51. Kaczmarek, L. K., Jennings, K. R., Strumwasser, F., Nairn, A. C., Walter, U. L., Wilson, F. D., and Greengard, P., Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture, Proc. Natl. Acad. Sci. USA 77:7487–7491 (1980).CrossRefGoogle Scholar
  52. Kennedy, M. B. and Greengard, P., Two calcium/calmodulin-dependent protein kinases which are highly concentrated in brain, phosphorylate Protein I at distinct sites, Proc, Natl. Acad. Sci. 78:1293–1297 (1981).CrossRefGoogle Scholar
  53. Kennedy, M. B., McGuinness, T., and Greengard, P., A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates synapsin I: Partial purification and characterization, J. Neurosci. 3:818–831 (1983).Google Scholar
  54. Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification and properties, J. Biol. Chem. 257:13341–13348 (1982).Google Scholar
  55. Krebs, E. G. and Beavo, J. A., Phosphorylation-dephosphorylation of enzymes, Ann. Rev. Biochem. 48:932–959 (1979).CrossRefGoogle Scholar
  56. Krueger, B. K., Forn, J., and Greengard, P., Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes, J, Biol. Chem. 252:764–2773 (1977).Google Scholar
  57. Kuhn, D. M. and Lovenberg, W., Role of calmodulin in the activation of tryptophan hydroxylase, Fed. Proc. 41:2258–2264 (1982).Google Scholar
  58. Langan, T., Phosphorylation of liver histone following the administration of glucagon and insulin, Proc. Natl. Acad. Sci. 64:1276–1283 (1969).CrossRefGoogle Scholar
  59. Lee, R. H., Brown, B. M., and Lolley, R. N., Protein kinases of retinal rod outer segments: identification and partial characterization of cyclic nucleotide dependent protein kinase and rhodopsin kinase, Biochem. 20: 7532–7538 (1981).CrossRefGoogle Scholar
  60. Llinas, R. R., Calcium in synaptic transmission, Scientific American 247: 56–65 (1982).CrossRefGoogle Scholar
  61. Llinas, R. R., The squid giant synapse, Curr. Top. Mem. Trans. 22:519–546 (1984).CrossRefGoogle Scholar
  62. Llinas, R. R., Steinberg, I. Z., and Walton, K., Presynaptic calcium currents in squid giant synapse, Biophys. J. 33:289–322 (1981).CrossRefGoogle Scholar
  63. Llinas, R. R., McGuinness, T. L., Leonard, C. S., Sugimori, M., and Greengard, P., Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse, Proc. Natl. Acad. Sci. USA 82:3035–3039 (1985).CrossRefGoogle Scholar
  64. Marchmont, R. J. and Houslay, M. D., Insulin triggers cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase, Nature 286:904–906 (1980).CrossRefGoogle Scholar
  65. McGuinness, T. L., Lai, Y. L., Greengard, P., Woodgett, J. R., Cohen, P., A multifunctional calmodulin-dependent protein kinase: similarities between skeletal muscle glycogen synthase and brain synapsin I kinase, FEBS Lett. 163:329–334 (1983).CrossRefGoogle Scholar
  66. McGuinness, T. L., Lai, Y. L., and Greengard, P., Ca2+/calmodulin-dependent protein kinase II: Isozymic forms from rat forebrain and cerebellum, J. Biol. Chem. 260:1696–1704 (1985).Google Scholar
  67. Mobley, P. and Greengard, P., Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex, Proc. Natl. Acad. Sci. USA 82:945–947 (1985).CrossRefGoogle Scholar
  68. Nairn, A. C. and Greengard, P., Purification and characterization of brain Ca2+/calmodulin-dependent protein kinase I that phosphorylates synapsin I, Neurosci. Abstr. 1029 (1983).Google Scholar
  69. Navone, F., Greengard, P., and DeCamilli, P., Synapsin I in nerve terminals: Selective association with small synaptic vesicles, Science 226:1209–1211 (1984).CrossRefGoogle Scholar
  70. Nestler, E. J. and Greengard, P., Dopamine and depolarizing agents regulate the state of phosphorylation of Protein I in the mammalian superior cervical sympathetic ganglion, Proc. Natl. Acad. Sci. USA 77:7479–7483 (1980).CrossRefGoogle Scholar
  71. Nestler, E. J. and Greengard, P., Nerve impulses increase the state of phosphorylation of protein I in the rabbit superior cervical ganglion, Nature 296:452–454 (1982).CrossRefGoogle Scholar
  72. Nestler, E. and Greengard, P., Protein phosphorylation in the nervous system, Wiley, New York (1984).Google Scholar
  73. Oestreicher, A. B., van Duin, M., Zwiers, H., and Gispen, W. H., Cross-reaction of anti-rat B-50: Characterization and isolation of a “B-50 phosphoprotein “ from bovine brain, J. Neurochem. 43:935–943 (1984).CrossRefGoogle Scholar
  74. Osterrieder, W., Brum, G., Hescheler, J., Trautwein, W., Flockerzi, V., and Hofmann, F., Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current, Nature 298:576–578 (1982).CrossRefGoogle Scholar
  75. Ouimet, C. C., McGuinness, T. L., and Greengard, P., Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat, Proc. Natl. Acad. Sci. USA 81:5604–5608 (1984).CrossRefGoogle Scholar
  76. Rangel-Aldao, R. and Rosen, O. M., Dissociation and reassociation of the phosphorylated and non-phosphorylated forms of adenosine 3′:5′-mono-phosphate-dependent protein kinase from bovine cardiac muscle, J. Biol. Chem. 251:3375–3380 (1976).Google Scholar
  77. Roberts, S., Ribosomal protein phosphorylation and protein synthesis in the brain, Prog. Brain Res. 56:195–211 (1982).CrossRefGoogle Scholar
  78. Schiebler, W. Jahn, R., Doucet, J.-P., Rothlein, J., and Greengard, P., Synapsin I (protein I) binds specifically and with high affinity to highly purified synaptic vesicles from rat brain, J. Biol. Chem. (in press) (1986).Google Scholar
  79. Schlichter, D. J., Casnellie, J. E., and Greengard, P., An endogenous substrate for cGMP-dependent protein kinase in mammalian cerebellum, Nature 273:61–62 (1978).CrossRefGoogle Scholar
  80. Schulman, H. and Greengard, P., Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein, Nature 271:478–479 (1978a).CrossRefGoogle Scholar
  81. Schulman, H. and Greengard, P., Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by “calcium-dependent regulator,” Proc. Natl. Acad. Sci. USA 75:5432–5436 (1978b).CrossRefGoogle Scholar
  82. Sharma, R. K., Wang, T. H., Wirch, E., and Wang, J. H., Purification and properties of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase, J. Biol. Chem. 255:5916–5923 (1980).Google Scholar
  83. Shichi, H. and Somers, R. L., Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase, J. Biol. Chem. 253: 7040–7046 (1978).Google Scholar
  84. Sieghart, W., Forn, J., Schwarcz, R., Coyle, J. T., and Greengard, P., Neuronal localization of specific brain phosphoproteins, Brain Res. 156: 345–350 (1978).CrossRefGoogle Scholar
  85. Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. F., Caron, M. G., and Lefkowitz, R. J., Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the β-adrenergic receptor, Proc. Natl. Acad. Sci. USA 80:3173–3177 (1983).CrossRefGoogle Scholar
  86. Teichberg, V. I. and Changeux, J.-P., Evidence for protein phosphorylation and dephosphorylation in membrane fragments isolated from the electric organ of Electrophorus electricus, FEBS Lett. 74:71–76 (1977).CrossRefGoogle Scholar
  87. Thomas, G., Activation of multiple S6 phosphorylation and its possible role in the alteration of mRNA expression, Prog. Brain Res. 56:179–194 (1982).CrossRefGoogle Scholar
  88. Treiman, M. and Greengard, P., D-1 and D-2 dopaminergic receptors regulate protein phosphorylation in the rat neurohypophysis, Neurosci. 15:713–722 (1985).CrossRefGoogle Scholar
  89. Tsou, K. and Greengard, P., Regulation of phosphorylation of Proteins I, IIIa IIIb in rat neurohypophysis in vitro by electrical stimulation and by neuroactive agents, Proc. Natl. Acad. Sci. USA 79:6075–6079 (1982).CrossRefGoogle Scholar
  90. Ueda, T., Attachment of the synapse-specific phosphoprotein, Protein I, to the synaptic membrane: A possible role of the collagenase-sensi-tive region of Protein I, J. Neurochem. 36:297–300 (1981).CrossRefGoogle Scholar
  91. Ueda, T., Maeno, H., and Greengard, P., Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′:5′ monophosphate, J. Biol. Chem. 248:8295–8305 (1973).Google Scholar
  92. Ueda, T. and Greengard, P., Adenosine 3′:5′ monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein, J. Biol. Chem. 252:5155–5163 (1977).Google Scholar
  93. Walaas, S. I., Aswad, D. W., and Greengard, P., A dopamine-and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions, Nature 301:69–71 (1983).CrossRefGoogle Scholar
  94. Wise, B. C., Guidotti, A., and Costa, E., Phosphorylation induces a decrease in the biological activity of the protein inhibitor (GABA-modulin) of γ-aminobutyric acid binding sites, Proc. Natl, Acad. Sci. USA 80:886–890 (1983).CrossRefGoogle Scholar
  95. Wu, W. C.-S., Walaas, S. I., Nairn, A. C., and Greengard, P., Calcium-phospholipid regulates phosphorylation of Mr “87K” substrate protein in brain synaptosomes, Proc. Natl. Acad. Sci. USA 79:5249–5253 (1982).CrossRefGoogle Scholar
  96. Yamauchi, T. and Fujisawa, H., Tyrosine 3-monooxygenase is phosphorylated by Ca2+-calmodulin-dependent protein kinase, followed by activation by activator protein, Biochem. Biophys. Res. Comm. 100:807–813 (1981).CrossRefGoogle Scholar
  97. Young, J. Z., The functioning of giant nerve fibers of the squid, J. Expl. Biol. 15:170–185 (1938).Google Scholar
  98. Zwiers, H., Veldhuis, D., Schotman, P., and Gispen, W. H., ACTH, cyclic nucleotides and brain protein phosphorylation in vitro, Neurochem. Res. 1:669–677 (1976).CrossRefGoogle Scholar
  99. Zwiers, H., Jolles, J., Aloyo, V. J., Oestereicher, A. B., and Gispen, W. H., ACTH and synaptic membrane phosphorylation, Prog. Brain Res. 55:405–417 (1982).CrossRefGoogle Scholar
  100. Zwiller, J. M., Revel, O., and Basset, P., Evidence for phosphorylation of rat brain guanylate cyclase by cyclic AMP-dependent protein kinase, Biochem. Biophys. Res. Commun. 101:1381–1387 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Paul Greengard
    • 1
  • Michael D. Browning
    • 1
  • Teresa L. McGuinness
    • 1
  • Rodolfo Llinas
    • 2
  1. 1.The Rockefeller UniversityNew YorkUSA
  2. 2.Department of Physiology and BiophysicsNew York University Medical CenterNew YorkUSA

Personalised recommendations