Structure and Regulation of the Human Metallothionein Gene Family

  • Adriana Heguy
  • Michael Karin
Part of the NATO ASI Series book series (NSSA, volume 101)


Metallothioneins (MTs) are a group of low-molecular-weight, heavy-metal binding proteins that are unique in their high cysteine content. MTs specifically bind heavy metals such as Zn, Cd, Cu, Hg, Au, and Ag in their ionic forms (1). These proteins have been isolated and characterized from a large number of animal and plant species, including lower eukaryotes. MTs exist in several molecular forms which are distinguishable by their electrophoretic behavior and are designated MT-I and MT-II. Recently, several other variants have been described in mammals (2).


Long Terminal Repeat Mouse Mammary Tumor Virus Glucocorticoid Hormone Metal Induction Glucocorticoid Receptor Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    KAGI, J.H.R. and NORDBERG, M., eds. (1979). “Metallothionein.” Birkhauser Verlag, Basel.Google Scholar
  2. 2.
    KLAUSER, S., KAGI, J.H.R., and WILSON, K.J. (1983). Characterization of isoprotein patterns in tissue extracts and isolated samples on metallothionein by reverse-phase high-pressure liquid chromatography. Biochem. J. 209, 71–80.PubMedGoogle Scholar
  3. 3.
    KARIN, M. and HERSCHMAN, H.R. (1979). Dexamethasone stimulation of metallothionein synthesis in HeLa cell cultures. Science 204, 176–177.PubMedCrossRefGoogle Scholar
  4. 4.
    KARIN, M. (1985). Metallothionein: proteins in search of a function. Cell 41, 9–10.PubMedCrossRefGoogle Scholar
  5. 5.
    DURNAM, D.M. and PALMITER, R.D. (1981). Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J. Biol. Chem. 256, 2268–2272.Google Scholar
  6. 6.
    HAGER, L.J. and PALMITER, R.D. (1981). Transcriptional regulation of mouse liver metallothionein-I gene by glucocorticoids. Nature 291, 340–342.PubMedCrossRefGoogle Scholar
  7. 7.
    OH, S., DEAGEN, J., WHANGER, P., and WESWIG, P. (1978). Biological function of metallothionein. Its induction in rats by various stresses. Am. J. Physiol. 234, E282 - E285.PubMedGoogle Scholar
  8. 8.
    DURNAM, D.M., HOFFMAN, J.S., QUAIFE, C.J., BENDITT, E.P., CHEN, H.T., BRINSTER, R.L., and PALMITER, R.D. (1984). Induction of mouse metallothionein-I mRNA by bacterial endotoxin is independent of metals and glucocorticoid hormones. Proc. Natl. Acad. Sci. USA 81, 1053–1056.PubMedCrossRefGoogle Scholar
  9. 9.
    FRIEDMAN, R.L., MANLY, S.P., McMAHON, M., KERR, I.M., and STARK, G.R. (1984). Transcriptional and post-transcriptional regulation of interferon-induced gene expression in HeLa cells. Cell 38, 745–755.PubMedCrossRefGoogle Scholar
  10. 10.
    KARIN, M. and RICHARDS, R.I. (1982). Human metallothionein genes: primary structure of the metallothionein-II gene and a related processed gene. Nature 299, 797–802.PubMedCrossRefGoogle Scholar
  11. 11.
    RICHARDS, R.I., HEGUY, A., and KARIN, M. (1984). Structural and functional analysis of the human metallothionein- I gene: differential induction by metal ions and gluco-cârticoids. Cell 37, 263–272.PubMedCrossRefGoogle Scholar
  12. 12.
    HARIN, M., CATHALA, G., and NGUYEN-HUU, M.C. (1983). Expression and regulation of a human metallothionein gene carried on an autonomously replicating shuttle vector. Proc. Natl. Acad. Sci. USA 80, 4040–4044.CrossRefGoogle Scholar
  13. 13.
    DURNAM, D.M., PERRIN, F., GANNON, F., and PALMITER, R.D. (1980). Isolation and characterization of the mouse metallothionein-I gene. Proc. Natl. Acad. Sci. USA 77, 6511–6515.PubMedCrossRefGoogle Scholar
  14. 14.
    GLANVILLE, N., DURNAM, D.M., and PALMITER, R.D. (1981). Structure of mouse metallothionein-I gene and its mRNA. Nature 292, 267–269.PubMedCrossRefGoogle Scholar
  15. 15.
    McKNIGHT, S.L. and KINGSBURY, R. (1982). Transcriptional control signals of a eukaryotic protein-coding gene. Science 217, 316–324.PubMedCrossRefGoogle Scholar
  16. 16.
    DIERKS, P., VAN 00YEN, A., COCHRAN, M., DOBKIN, D., REISER, J., and WEISSMAN, C. (1983). Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit ß-globin gene in mouse 3T6 cells. Cell 32, 695–706.PubMedCrossRefGoogle Scholar
  17. 17.
    GROSVELD, G.C., De BOER, E., SHEWMAKER, C.K., and FLAVELL, R.A. (1982). DNA sequences mecessary for transcription of the rabbit -globin gene in vivo. Nature 295, 120–126.PubMedCrossRefGoogle Scholar
  18. 18.
    BENOIST, C. and CHAMBON, P. (1981). In vivo sequence requirements of the SV40 early promoter region. Nature 290, 304–310.PubMedCrossRefGoogle Scholar
  19. 19.
    KARIN, M., HASLINGER, A., HOLTGREVE, H., CATHALA, G., SLATER, E., and BAXTER, J.D. (1984a). Activation of a heterologous promoter in response to dexamethasone and cadmium by metallothionein gene 5’ flanking DNA. Cell 36, 371–379.PubMedCrossRefGoogle Scholar
  20. 20.
    KARIN, M., HASLINGER, A., HOLTGREVE, H., RICHARDS, R.I., KRAUTER, P., WESTPHAL, H.M., and BEATO, M. (1984b). Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce mouse metallothionein-IIA gene. Nature 308, 513–519.PubMedCrossRefGoogle Scholar
  21. 21.
    KARIN, M. and HOLTGREVE, H. (1984). Nucleotide sequence requirements for transient expression of human metallothionein-IIA-thymidine kinase fusion genes. DNA 3, 319–326.PubMedCrossRefGoogle Scholar
  22. 22.
    SCHEREDEIT, C., GEISSE, S., WESTPHAL, H.M., and BEATO, M. (1983). The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumor virus. Nature 304, 749–752.CrossRefGoogle Scholar
  23. 23.
    SEARLE, P.F., DAVISON, B.L., STUART, G.W., WILKEI, T.M., NORDSTEDT, G., and PALMITER, R.D. (1984). Regulation, linkage, and sequence of mouse metallothionein I and II genes. Mol. Cell. Biol. 4, 1221–1230.PubMedGoogle Scholar
  24. 24.
    KARIN, M., ANDERSEN, R.D., SLATER, E., SMITH, K., and HERSCHMAN, H.R. (1980). Metallothionein mRNA induction in HeLa cells in response to zinc or dexamethasone is a primary induction response. Nature 286, 295–297.PubMedCrossRefGoogle Scholar
  25. 25.
    MAYO, K.E. and PALMITER, R.D. (1981). Glucocorticoid regulation of metallothionein-I mRNA synthesis in cultured mouse cells. J. Biol. Chem. 256, 2651–2654.Google Scholar
  26. 26.
    KARIN, M. and RICHARDS, R.I. (1984). The human metallothionein family: structure and expression. Env. Health Persp. 54, 111–115.CrossRefGoogle Scholar
  27. 27.
    KARIN, M., SLATER, E.P., and HERSCHMAN, H.R. (1981). Regulation of metallothionein synthesis in HeLa cells by heavy metals and glucocorticoids. J. Cell. Physiol. 106, 63–74.PubMedCrossRefGoogle Scholar
  28. 28.
    DURNAM, D.M. and PALMITER, R.D. (1984). Induction of metallothionein-I mRNA in cultured cells by heavy metals and iodoacetate: evidence for gratuitous inducers. Mol. Cell. Biol. 4, 484–491.PubMedGoogle Scholar
  29. 29.
    SCHMIDT, C.J., HAMER, D.H., and McBRIDE, O.W. (1984). Chromosomal location of human metallothionein genes: im-plications for Menkes’ disease. Science 224, 1104–1106.PubMedCrossRefGoogle Scholar
  30. 30.
    KARIN, M., EDDY, R.L., HENRY, M.A.,W.M., HALEY, L.L., BYERS, M.A., and SHOWS, T.B. (1984c). Human metallothionein genes are clustered on chromosome 16. Proc. Natl. Acad. Sci. USA 81, 5494–5498.CrossRefGoogle Scholar
  31. 31.
    LaBEAU, M.M., LARSON, R.A., BITTER, M.A., WARDIMAN, J.W., GOLOMB, H.M., and ROWLEY, J.D. (1983). Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. N. Engl. J. Med. 309, 630–636.CrossRefGoogle Scholar
  32. 32.
    LeBEAU, M.M., DIAZ, M.O., KARIN, M., and ROWLEY, J.D. (1985). Metallothionein gene cluster is split by the inv(16) and t(16,16) in myelomonocytic leukemia. Nature 313, 709–711.CrossRefGoogle Scholar
  33. 33.
    BANERJI, J., RUSCONI, S., and SCHAFFNER, W. (1981). Expression of a a-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308.PubMedCrossRefGoogle Scholar
  34. 34.
    WASYLYK, B., WASYLYK, C., AUGEREAU, P., and CHAMBON, P. (1983). The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell 32, 503–514.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Adriana Heguy
    • 1
  • Michael Karin
    • 1
  1. 1.Department of MicrobiologyUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations