Advertisement

Regulatory Elements in Steroid Hormone Inducible Genes: Structure and Evolution of DNA Sequences Recognized by Steroid Hormone Receptors

  • M. Beato
  • C. Scheidereit
  • P. Krauter
  • D. von der Ahe
  • S. Janich
  • A. C. B. Cato
  • G. Suske
  • H. M. Westphal
Part of the NATO ASI Series book series (NSSA, volume 101)

Abstract

The mechanism by which steroid hormones control the synthesis of specific proteins in target cells has attracted the attention of molecular biologists because it represents a useful model system for studying regulation of gene expression in terminally differentiated cells of higher organisms. The cellular effects of steroid hormones are mediated by their corresponding receptors that, after binding the hormone, interact with specific sites in chromatin (1, 2). Considerable effort has been devoted to elucidate the mechanism of this interaction. Until recently a widespread hypothesis assumed the existence of specific “acceptor” sites in the chromatin of target cells, composed essentially of non-histone chromosomal proteins (3). This idea was based on the observation of a saturable preferential binding of hormone receptor to isolated nuclei or chromatin from target cells (4–8). However, some of these observations were later questioned, and they probably reflected in vitro artifacts (9–12). On the other side, a direct binding of hormone-receptor complexes to naked DNA has been observed in several systems (4, 12–14) and therefore the possibility was considered that the receptors could recognize specific DNA sequences (15, 16).

Keywords

Progesterone Receptor Glucocorticoid Receptor Long Terminal Repeat Mouse Mammary Tumor Virus Dimethyl Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    HIGGINS, S. J. and GEHRING, U. (1978). Molecular mechanisms of steroid hormone action. Adv. Cancer Res. 28, 313–397.PubMedCrossRefGoogle Scholar
  2. 2.
    GRONEMEYER, H. and PONGS, O. (1980). Localization of ecdysterone on polytene chromosomes of D. melanogaster. Natl. Acad. Proc. Sci. USA 77, 2108–2112.CrossRefGoogle Scholar
  3. 3.
    SPELSBERG, T.C., LITTLEFIELD, B.A., SEELKE, R., DANI, G.M., TOYODA, H., BOYD-LEINEN, P., THRALL, C., and KON, O.L. (1983). Role of specific chromosomal proteins and DNA sequences in the nuclear binding sites for steroid receptors. Recent Progr. Hormone Res. 39, 463–513.PubMedGoogle Scholar
  4. 4.
    BAXTER, J.D., ROUSSEAU, G.G., BENSON, M.C., GARCEA, R.L., ITO, J., and TOMKINS, G.M. (1972). Role of DNA and specific cytoplasmic receptors in glucocorticoid action. Proc. Natl. Acad. Sci. USA 69, 1892.PubMedCrossRefGoogle Scholar
  5. 5.
    SCHRADER, U.T., TOFT, D.O., and O’MALLEY, B.W. (1972). Progesterone-binding proteins of chick oviduct. VI. Interaction of purified progesterone-receptor components with nuclear constituents. J. Biol. Chem. 247, 2401–2407.PubMedGoogle Scholar
  6. 6.
    HIGGINS, S.J., ROUSSEAU, G.G., BAXTER, J.D., and TOMKINS, J., (1973). Early events in glucocorticoid action. Activation of the steroid receptor and its subsequent specific nuclear binding studied in a cell-free system. J. Biol. Chem. 248, 5866–5872.PubMedGoogle Scholar
  7. 7.
    KALIMI, M., BEATO, M., and FEIGELSON, P. (1973). Interactions of glucocorticoids with rat liver nuclei. I. Role of the cytosol proteins. Biochemistry 12, 3365–3371.PubMedCrossRefGoogle Scholar
  8. 8.
    LIPPMAN, M.E. and THOMPSON, E.B. (1974). Steroid receptors and the mechanism of the specificity of glucocorticoid responsiveness of somatic cell hybrids between hepatoma tissue culture cells and mouse fibroblasts. J. Biol. Chem. 249, 2483–2488.PubMedGoogle Scholar
  9. 9.
    CHAMNESS, G.C., JENNINGS, A.W., and McGUIRE, W.L. (1974). Estrogen receptor binding to isolated nuclei. A nonsaturable process. Biochemistry 13, 237.CrossRefGoogle Scholar
  10. 10.
    MILGROM, E. and ATGER, M. (1975). Receptor translocation inhibitor and apparent saturability of the nuclear acceptor. Biochemistry 6, 487–492.Google Scholar
  11. 11.
    SIMONS, S.S., MARTINEZ, H.M., GARCEA, R.L., BAXTER, J.D., and TOMKINS, G.M. (1976). Interactions of gulcocorticoid receptor-steroid complexes with acceptor sites. I. Biol. Chem. 251, 334–343.Google Scholar
  12. 12.
    BUGANY, H. and BEATO, M. (1977). Binding of the partially purified glucocorticoid receptor of rat liver to chromatin and DNA. Mol. Cell. Endocrinol. 7, 49–66.PubMedCrossRefGoogle Scholar
  13. 13.
    BEATO, M., KALIMI, M., KONSTAM, M., and FEIGELSON, P. (1973). Interaction of glucocorticoids with rat liver nuclei: II. Studies on the nature of the cytosol transfer factor and the nuclear acceptor site. Biochemistry 12, 3372–3379.PubMedCrossRefGoogle Scholar
  14. 14.
    MILGROM, E., ATGER, M., and BAULIEU, E.E. (1973). Acidophilic activation of steroid hormone receptors. Biochemistry 12, 5198.PubMedCrossRefGoogle Scholar
  15. 15.
    YAMAMOTO, K.R. and ALBERTS, R. (1975). Steroid receptors: elements for modulation of eukaryotic transcription. Cell 4, 301–310.PubMedCrossRefGoogle Scholar
  16. 16.
    BEATO, M. and DOENECKE, D. (1980). Metabolic effects and modes of action of glucocorticoids. In: “General, comparative and clinical endocrinology of tree adrenal cortex,” Vol. 3 (I. Chester Jones and I.W. Henderson, eds.) pp. 117181. Academic Press, New York.Google Scholar
  17. 17.
    YAMAMOTO, K.R. and ALBERTS, B. (1974). On the specificity of the binding of estradiol receptor protein to DNA. J. Biol. Chem. 249, 7076–7086.PubMedGoogle Scholar
  18. 18.
    ROUSSEAU, G.G. HIGGINS, S.J., BAXTER, J.D., GELFAND, D., and TOMKINS, G.M. (1975). Binding of glucocorticoid receptors to DNA. J. Biol. Chem. 250, 6015–6021.PubMedGoogle Scholar
  19. 19.
    KALLOS, J. and HOLLANDER, V.P. (1978). Assessment of specificity of estrogen receptor-DNA interaction by a competitive assay. Nature 272, 177–179.PubMedCrossRefGoogle Scholar
  20. 20.
    MULVIHILL, E.R., LEPENNEC, J.P., and CHAMBON, P. (1982). Chicken oviduct progesterone receptor: location of specific regions of high affinity binding in cloned DNA fragments of hormone responsive chicken genes. Cell 28, 62 1632.CrossRefGoogle Scholar
  21. 21.
    SCHEIDEREIT, C., GEISSE, S., WESTPHAL, H.M., ana,SEATO, M. (1983). The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumour virus. Nature 304, 749–752.PubMedCrossRefGoogle Scholar
  22. 22.
    RIGGS, A.D., SUZUKI, H., and BOURGEOIS, S. (1970). Lac repressor-operator interaction. I. Equilibrium studies. J. Mol. Biol. 48, 67–83.PubMedCrossRefGoogle Scholar
  23. 23.
    WRANGE, O., CARLSTEDT-DUKE, D.C., and GUSTAFSSON, J.A. (1979). Purification of the glucocorticoid-receptor from rat liver cytosol. J. Biol. Chem. 254, 9284–9290.PubMedGoogle Scholar
  24. 24.
    OKRET, S., CARLSTEDT-DUKE, J., WRANGE, O., CARLSTROM, K., and GUSTAFSSON, J.A. (1981). Characterization of an antiserum against the glucocorticoid receptor. Biochim Biophys. Acta 677, 205–219.PubMedCrossRefGoogle Scholar
  25. 25.
    CARLSTEDT-DUKE, J., OKRET, S., WRANGE, O., and GUSTAFSSON, J.A. (1982). Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separated from the steroid-binding and DNA-binding domains. Proc. Natl. Acad. Sci. USA 79, 4260–4264.PubMedCrossRefGoogle Scholar
  26. 26.
    WESTPHAL, H.M., MOLDENHAUER, G., and BEATO, M. (1982). Monoclonal antibodies to the rat liver glucocorticoid receptor. EMBO J. 1, 1467–1471.PubMedGoogle Scholar
  27. 27.
    WESTPHAL, H.M. and BEATO, M. (1980). The activated glucocorticoid receptor of rat liver. Purification and physical characterization. Eur. J. Biochem. 106, 395–403.PubMedCrossRefGoogle Scholar
  28. 28.
    WEIGEL, N.L., TASH, J.S., MEANS, A.R., SCHRADER, W.T., and O’MALLEY, B.W. (1981). Phosphorylation of hen progesterone receptor by cAMP-dependent protein kinase. Biochem. Biophys. Res. Commun. 102, 513–519.PubMedCrossRefGoogle Scholar
  29. 29.
    BAILLEY, A., ATGER, M., ATGER, P., CERBON, M.A., ALIZON, M., HAI, M.T.V., LOGEAT, F., and MILGROM, E. (1983). The rabbit uteroglobin gene. Structure and interaction with the progesterone receptor. J. Biol. Chem. 258, 10384–10389.Google Scholar
  30. 30.
    RINGOLD, G. (1979). Glucocorticoid regulation of mouse mammary tumor virus gene expression. Biochim. Biophys. Acta 560, 487–508.PubMedGoogle Scholar
  31. 31.
    BUETTI, E. and DIGGELMANN, H. (1981). Cloned MMTV virus DNA is biologically active in transferred mouse cells and its expression is stimulated by glucocorticoid hormones. Cell 23, 335–345.PubMedCrossRefGoogle Scholar
  32. 32.
    HUANG, A.L., OSTROWSKI, M.C., BERARD, D., and HAGER, G.L. (1982). Glucocorticoid regulation of the Ha-MaSVp21 gene conferred by sequences from mousr mammary tumor virus. Cell 27, 245–255.CrossRefGoogle Scholar
  33. 33.
    HYNES, N.E., KENNEDY, N., RAHMSDORF, U., and GRONER, B. (1981). Hormone responsive expression of an endogenous proviral gene of MMTV after molecular cloning and gene transfer into cultured cells. Proc. Natl. Acad. Sci. USA 78, 2038–2042.PubMedCrossRefGoogle Scholar
  34. 34.
    LEE, F., MULLIGAN, R., BERG, P., and RINGOLD, G. (1981). Glucocorticoid regulated expression of dehydrofolate reductase cDNA in mouse mammary tumor virus chimeric plasmids. Nature 294, 228–232.PubMedCrossRefGoogle Scholar
  35. 35.
    BUETTI, E. and DIGGELMANN, H. (1983). Glucocorticoid regulation of MMTV: identification of a short essential region. EMBO J. 2, 1423–1429.PubMedGoogle Scholar
  36. 36.
    GEISSE, S., SCHEIDEREIT, C., WESTPHAL, H.M., HYNES, N.E., GRONER, B., and BEATO, M. (1982). Glucocorticoid receptors DNA sequence in recognize virus DNA. and around murine mammary tumour EMBO J. 1, 1613–1619.PubMedGoogle Scholar
  37. 37.
    GOVINDAN, M.V., SPIESS, E., and MAJORS, J. (1982). Purified glucocorticoid receptor-hormone complex from rat liver cytosol binds specifically to cloned mouse mammary tumor virus long terminal repeats in vitro. Proc. Natl. Acad. Sci. USA 79, 5157–5161.PubMedCrossRefGoogle Scholar
  38. 38.
    PAYVAR, F., FIRESTONE, G., ROSS, S.R., CHANDLER, V.L., WRANGE, O., CARLSTEDT-DUKE, J., GUSTAFSSON, J.A., and YAMAMOTO, K.R. (1982). Multiple specific binding sites for purified glucocorticoid receptors on mammary tumor virus DNA. J. Cell. Biochem. 19, 241–247.PubMedCrossRefGoogle Scholar
  39. 39.
    PFAHL, M. (1982). Specific binding of the glucocorticoidreceptor complex to the mouse mammary tumor proviral promoter region. Cell 31, 475–482.PubMedCrossRefGoogle Scholar
  40. 40.
    GRONER, B., PONTA, H., BEATO, M., and HYNES, N.E. (1983). The proviral DNA of mouse mammary tumor virus: its use in the study of the molecular details of steroid hormone action. Mol. Cell. Endocrinol. 32, 101–116.PubMedCrossRefGoogle Scholar
  41. 41.
    PAYVAR, F., DE FRANCO, D., FIRESTONE, G.L., EDGAR, G.L., WRANGE, O., OKRET, S., GUSTAFSSON, J.A., and YAMAMOTO, K.R. (1983). Sequence-specific binding of glucocorticoid receptor to MMTV DNA at sites within and upstream of the transcribed region. Cell 35, 381–392.PubMedCrossRefGoogle Scholar
  42. 42.
    PAYVAR, F., WRANGE, O., CARLSTEDT-DUKE, J., OKRET, S., GUSTAFSSON, J.A., and YAMAMOTO, K.R. (1981). Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo. Proc. Natl. Acad. Sci. USA 78, 6628–6632.PubMedCrossRefGoogle Scholar
  43. 43.
    PAYVAR, F. and WRANGE, O. (1983). Relative selectivities and efficiencies of DNA binding by purified intact and protease-cleaved glucocorticoid receptor. In: “Steroid Hormone Receptors: Structure and Function,” Nobel Symp. 57. ( H. Eriksson, J.A. Gustafsson and B. Hogberg, eds.) Elsevier/North Holland, Biomed. Press, Amsterdam.Google Scholar
  44. 44.
    DELLWEG, H.G., HOTZ, A., MUGELE, K., and GEHRING, U. (1982). Active domains in wild-type and mutant glucocorticoid receptors. EMBO J. 1, 285–289.PubMedGoogle Scholar
  45. 45.
    HYNES, N.E., VAN OOYEN, A.J.J., KENNEDY, N., HERRLICH, P., PONTA, H., and GRONER, B. (1983). Subfragments of the large terminal repeat cause glucocorticoid responsive expression of mouse mammary tumor virus and of an adjacent gene. Proc. Natl. Acad. Sci. USA 80, 3637–3641.CrossRefGoogle Scholar
  46. 46.
    GALAS, D.J. and SCHMITZ, A. (1978). DNase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170.PubMedCrossRefGoogle Scholar
  47. 47.
    SCHEIDEREIT, C., KRAUTER, P., WESTPHAL, H.M., and BEATO, M. (1984). Interaction of glucocorticoid hormone receptors with defined DNA sequences of inducible genes. In: “Hormones and Cancer,” Vol. 2 (F. Bresciani, et al., as.) pp. 89–96. Raven Press, New York.Google Scholar
  48. 48.
    SCHEIDEREIT, C. and BEATO, M. (1984). Contacts between receptor and DNA double helix within a glucocorticoid regulatory element of mouse mammary tumor virus. Proc. Natl. Acad. Sci. USA 81, 3029–3033.PubMedCrossRefGoogle Scholar
  49. 49.
    SIEBENLIST, U., SIMPSON, R.B., and GILBERT, W. (1980). E. coli RNA polymerase interacts homologously with two different promoters. Cell 20, 269–281.PubMedCrossRefGoogle Scholar
  50. 50.
    OGATA, R.T. and GILBERT, W. (1978). An amino-terminal fragment of the lac repressor binds specifically to lac operator. Proc. Natl. Acad. Sci. USA 75, 5851–5854.PubMedCrossRefGoogle Scholar
  51. 51.
    WEIHER, H., KONIG, M., and GRUSS, P. (1983). Multiple point mutations affecting the SV40 enhancer. Science 219, 626–631.PubMedCrossRefGoogle Scholar
  52. 52.
    BANERJI, J., RUSCONI, S., and SCHAFFNER, W. (1981). Ex- pression of a ß-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308.PubMedCrossRefGoogle Scholar
  53. 53.
    RUSS, P., DAHR, R., and KHOURY, G. (1981). Simian virus 40 tandem repeated sequences as an element of early promoter. Proc. Natl. Acad. Sci. USA 78, 943–947.CrossRefGoogle Scholar
  54. 54.
    BANERJI, J., OLSON, L., and SCHAFFNER, W. (1983). A lymphocyte-specific cellular enhancer is located downstream of the joining region in IgG heavy chain genes. Cell 33, 729–740.PubMedCrossRefGoogle Scholar
  55. 55.
    GILLES, S.D., MORRISON, S.L., OI, V.T., and TONEGAWA, S. (1983). A tissue-specific transcription enhancer element is located in the major intron of a rearranged IgG heavy chain gene. Cell 33, 717–728.CrossRefGoogle Scholar
  56. 56.
    QUEEN, C. and BALTIMORE, D. (1983). Immunoglobin gene transcription is activated by downstream sequence elements. Cell 33, 741–748.PubMedCrossRefGoogle Scholar
  57. 57.
    CHANDLER, V.L., MALER, B.A., and YAMAMOTO, K.R. (1983). DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33, 489–499.PubMedCrossRefGoogle Scholar
  58. 58.
    KARIN, M. and RICHARDS, R. (1982). Human metallothionein genes. Primary structure of the metallothionein II gene and a related processed gene. Nature 299, 797–802.PubMedCrossRefGoogle Scholar
  59. 59.
    KARIN, M., HASLINER, A., HOLTGREVE, H., RICHARDS, R.I., KRAUTER, P., WESTPHAL, H.M., and BEATO, M. (1984). Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein IIA-gene. Nature 308, 513–519.PubMedCrossRefGoogle Scholar
  60. 60.
    GLANVILLE, N., DURNAM, D.M., and PALMITER, R.D. (1981). Structure of mouse metallothionein-I gene and its mRNA. Nature 292, 267–269.PubMedCrossRefGoogle Scholar
  61. 61.
    HUGHES, M.R., COMPTON, J.G., SCHRADER, W.T., and O’MALLEY, B.W. (1981). Interaction of the chick oviduct proges- terone-receptor with DNA. Biochemistry 20, 248–291.CrossRefGoogle Scholar
  62. 62.
    COMPTON, J.G., SCHRADER, W.T., and O’MALLEY, B.W. (1982). Selective binding of chicken progesterone receptor. A subunit to a DNA fragment containing ovalbumin gene sequences. Biochem. Biophys. Res. Commun. 105, 96–104.PubMedCrossRefGoogle Scholar
  63. 63.
    COMPTON, J.G., SCHRADER, W.T., and O’MALLEY, B.W. (1983). DNA sequence preference of the progesterone receptor. Proc. Natl. Acad. Sci. USA 80, 16–20.PubMedCrossRefGoogle Scholar
  64. 64.
    RENKAWITZ, R., BEUG, H., GRAF, T., MATTHIAS, P., GREZ, M., and SCHUTZ, G. (1982). Expression of a chicken lysozyme recombinant gene is regulated by progesterone and dexamethasone after microinjection in oviduct cells. Cell 31, 167–176.CrossRefGoogle Scholar
  65. 64a.
    RENKAWITZ, R., SCHUTZ, G., VON DER AHE, D., and BEATO, M. (1984). Identification of hormone regulatory elements in the promoter region of the chicken lysozyme gene. Cell 37, 503–510.PubMedCrossRefGoogle Scholar
  66. 65.
    GREZ, M., LAND, H., GIESECKE, K., SCHUTZ, M., JUNG, A., and SIPPEL, A.E. (1981). Multiple mRNA’s are generated from the chicken lysozyme gene. Cell 25, 743–752.PubMedCrossRefGoogle Scholar
  67. 66.
    VON DER AHE, D., JANICH, S., SCHEIDEREIT, C., RENKAWITZ, R., SCHUTZ, G., and BEATO, M. (1985). Glucocorticoid and progesterone receptors bind to the same sites in two hormonally-regulated promoters. Nature 313, 706–709.PubMedCrossRefGoogle Scholar
  68. 67.
    TAKEDA, Y., OHLENDORF, D.H., ANDERSON, V.F., and MATTHEWS, B.W. (1983). DNA binding proteins. Science 221, 1020–1026.PubMedCrossRefGoogle Scholar
  69. 68.
    ALBA, H. (1983). Autoregulation of the E. coli crp gene: DRP is a transcriptional repressor of its own gene. Cell 32, 141–149.Google Scholar
  70. 68a.
    GUERTIN, M., BARIL, P., BARTKOWIAK, J., ANDERSON, A., and BELANGER, L. (1983). Rapid suppression of xl-fetoprotein gene transcription by dexamethasone in developing rat liver. Biochemistry 22, 4296–4302.PubMedCrossRefGoogle Scholar
  71. 69.
    SEEMAN, N.C., ROSENBERG, J.M., and RICH, A. (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sci. USA 73, 804–808.PubMedCrossRefGoogle Scholar
  72. 70.
    SADLER, J.R., WATERMAN, M.S., and SMITH, T.F. (1983). Regulatory pattern identification in nucleic acid sequences. Nucleic Acids Res. 11, 2221–2231.PubMedCrossRefGoogle Scholar
  73. 71.
    DICKERSON, R.E. and DREW, H.R. (1981). Structure of a B-DNA dodecamer. II. Influence of base sequence on helix structure. J. Mol. Biol. 149, 761–786.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Beato
    • 1
  • C. Scheidereit
    • 1
  • P. Krauter
    • 1
  • D. von der Ahe
    • 1
  • S. Janich
    • 1
  • A. C. B. Cato
    • 1
  • G. Suske
    • 1
  • H. M. Westphal
    • 1
  1. 1.Institut für Physiologische ChemiePhillipps-UniversitätMarburgGermany

Personalised recommendations