Advertisement

Promoter Elements of Eukaryotic Protein-Coding Genes

  • B. Wasylyk
Part of the NATO ASI Series book series (NSSA, volume 101)

Abstract

In prokaryotes, initiation of transcription is controlled by specific DNA regions called promoters. Promoters were first defined on a genetic basis (1) as cis-acting regions indispensable for the expression of bacterial genes. Biochemical studies have shown that prokaryotic promoters are located 5′ to the transcribed genes and are composed of multiple elements (2–5) as shown in Figure 1. One of these elements is involved in RNA polymerase binding. It includes the RNA start-site (consensus sequence 5′-CAT-3′), the Pribnow-Schaller box located 10 bp upstream from the start-site (consensus sequence 5′-TATAAT-3′), and frequently a third region, located in the −35 region (consensus sequence 5′-TTGACA-3′). The spatial relationship between the Pribnow-Schaller box and the −35 region is important because the insertion or deletion of a single base-pair can lead to a dramatic alteration of transcription (6). Other promoter elements, located either further upstream or downstream from the RNA start-site, interact with positive and negative regulatory proteins, which control the efficiency of transcription initiation (7–12).

Keywords

Thymidine Kinase Promoter Element Simian Virus Thymidine Kinase Gene Upstream Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    JACOB, F., ULLMAN, A., and MONOD, J. (1964). C.R. Acad.Sci. 258, 3125.Google Scholar
  2. 2.
    ROSENBERG, M. and COURT, D. (1979). Regulatory sequences involved in the promotion and termination of RNA transcription. Ann. Rev. Genet. 13, 319.PubMedCrossRefGoogle Scholar
  3. 3.
    LOSICK, R. and CHAMBERLIN, M. (1976). In: “RNA Polymerase”, pp. 285–329. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  4. 4.
    RODRIGUEZ, R.L. and CHAMBERLIN, M.J., eds. (1982). “Promoters: Structure and Function.” Praeger, New York.Google Scholar
  5. 5.
    SEIBENLIST, U., SIMPSON, R.B., and GILBERT, W. (1980). E. coli RNA polymerase interacts homologously with two different promoters. Cell 20, 269–281.Google Scholar
  6. 6.
    STEFANO, J.E. and GRALLA, J.D. (1982). Spacer mutations in the lac ps promoter. Proc. Natl. Acad. Sci. USA 79, 1069–1072.PubMedCrossRefGoogle Scholar
  7. 7.
    GUARENTE, L., NYE, J.S., HOCHSCHILD, A., and PTASHNE, M. (1982). Mutant lambda phage repressor with a specific defect in its positive control function. Proc. Natl. Acad. Sci. USA 79, 2236–2239.PubMedCrossRefGoogle Scholar
  8. 8.
    HOCHSCHILD, A., IRWIN, N., and PTASHNE, M. (1983). Repressor structure and the mechanism of positive control. Cell 32, 319–325.PubMedCrossRefGoogle Scholar
  9. 9.
    HAWLEY, D.K. and McCLURE, W.R. (1983). Compilation and analysis of Escherichia coli sequences. Cell promoter DNA 32, 327–333.Google Scholar
  10. 10.
    De CROMBRUGGHE, B., BUSBY, S., and BRUC, H. (1984). In: “Biological Regulation and Development,” Goldberger and K.R. Yamamoto, eds.) pp. 129–167Google Scholar
  11. 11.
    VON HIPPEL, P.H., BEAR, K.G., MORGAN, W.D., and McSWIGGEN, J.A. (1984). Protein-nucleic acid interactions in transcription: a molecular analysis. Ann. Rev. Biochem. 53, 389–446.CrossRefGoogle Scholar
  12. 12.
    MAJUMDAR, A. and ADHYA, S. (1984). Demonstration of two operator elements in gal: in vitro repressor binding studies. Proc. Natl. Acad. Sci. USA 81, 6100–6104.PubMedCrossRefGoogle Scholar
  13. 13.
    BRADY, J., RADONOVICH, M., VODKIN, M., NATARAJAN, V., THOREN, M., DAS, G., JANIK, J., and SALZMAN, N.P. (1982). Site-specific base substitution and deletion mutations that enhance or suppress transcription of the SV40 major late RNA. Cell 31, 625–633.PubMedCrossRefGoogle Scholar
  14. 14.
    CORDEN, J., WASYLYK, B., BUCHWALDER, A., SASSONE-CORSI, P., KEDINGER, C., and CHAMBON, P. (1980). Expression of cloned genes in new environment. Science 209, 1406–1414.PubMedCrossRefGoogle Scholar
  15. 15.
    BREATHNACH, R. and CHAMBON, P. (1981). Organization and expression of eucaryotic split genes coding for proteins. Ann. Rev. Biochem. 50, 349–383.PubMedCrossRefGoogle Scholar
  16. 16.
    McKNIGHT, S.L. and KINGSBURY, R. (1982). Transcriptional control signals of a eukaryotic protein-coding gene. Science 217, 316–325.PubMedCrossRefGoogle Scholar
  17. 17.
    DIERKS, P., VAN DOYEN, A., COCHRAN, M., DOBKIN, C., REISER, J., and WEISSMANN, C. (1983). Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit beta-globin gene in mouse 3T6 cells. Cell 32, 695–706.PubMedCrossRefGoogle Scholar
  18. 18.
    WASYLYK, B., WASYLYK, C., MATTHES, H., WINTZERITH, M., and CHAMBON, P. (1983). Transcription from the SV40 early-early and late-early over-lapping promoters in the absence of DNA replication. EMBO J. 2, 1605–1611.PubMedGoogle Scholar
  19. 19.
    DAVISON, B.L., EGLY, J.M., MULVIHILL, E.R., and CHAMBON, P. (1983). Formation of stable preinitiation complexes between eukaryotic class B transcription factors and promoter sequences. Nature 301, 680–686.PubMedCrossRefGoogle Scholar
  20. 20.
    CONCINO, M.F., LEE, R.F., MERRYWEATHER, J.P., and WEINMANN, R. (1984). The adenovirus major late promoter TATA box and initiation site are both necessary for transcription in vitro. Nucleic Acids Res. 12, 7423–7433.PubMedCrossRefGoogle Scholar
  21. 21.
    FIRE, A., SAMUELS, M., and SHARP, P.A. (1984). Inter- actions between RNA polymerase II, factors, and template leading to accurate transcription. J. Biol. Chem. 259, 2509–2516.PubMedGoogle Scholar
  22. 22.
    HIROSE, S., TAKEUCHI, K., HORI, H., HIROSE, T., INAYAMA, A., and SUZUKI, Y. (1984). Contact points between transcription machinery and the fibroin gene promoter deduced by functional tests of single-base substitution mutants. Proc. Natl. Acad. Sci. USA 81, 1394–1397.PubMedCrossRefGoogle Scholar
  23. 23.
    PARKER, C.S. and TOPOL, J. (1984). A Drosophila RNA polymerase II transcription factor contains a promoter region specific DNA-binding activity. Cell 36, 357–369.PubMedCrossRefGoogle Scholar
  24. 24.
    WU, C. (1984). Two protein-binding sites in chromatin implicated in the activation of heat-shock genes. Nature 309, 229–234.PubMedCrossRefGoogle Scholar
  25. 25.
    WU, C. (1984). Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311, 81–84.PubMedCrossRefGoogle Scholar
  26. 26.
    EGLY, J.M., MIYAMOTO, N.G., MONCOLLIN, V., and CHAMBON, P. (1984). Is actin a transcription initiation factor for RNA polymerase B? EMBO J. 3, 2363–2371.PubMedGoogle Scholar
  27. 27.
    MATSUI, T., SEGALL, J., WEIL, P.A., and ROEDER, R.G. (1980). Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255, 11992–11996.PubMedGoogle Scholar
  28. 28.
    BUNICK, D., ZANDOMENI, R., ACKERMAN, S., and WEINMANN, R. (1982). Mechanism of RNA polymerase II-specific initiation of transcription in vitro: ATP requirement and uncapped runoff transcripts. Cell 29, 877–886.Google Scholar
  29. 29.
    SAWADOGO, M. and ROEDER, R.G. (1984). Energy requirement for specific transcription initiation by the human RNA polymerase II system. J. Biol. Chem. 259, 5321–5326.PubMedGoogle Scholar
  30. 30.
    BENOIST, C., O’HARE, K., BREATHNACH, R., and CHAMBON, P. (1980). The ovalbumin gene–sequence of putative control regions. Nucleic Acids Res. 8, 127–142.Google Scholar
  31. 31.
    SHAW, C.H., CARTER, G.H., WATSON, M.D., and SHAW, C.H. (1984). A functional map of the mopaline synthase promoter. Nucleic Acids Res. 12, 7831–7846.PubMedCrossRefGoogle Scholar
  32. 32.
    GROSVELD, G.C., ROSENTHAL, A.I., and FLAVELL, R.A. (1982). Sequence requirements for the transcription of the rabbit beta globin gene in vivo the -80 region. Nucleic Acids Res. 10, 4951–4971.PubMedCrossRefGoogle Scholar
  33. 33.
    ELKAIM, R., GODING, C., and KEDINGER, C. (1983). The adenovirus-2 EIIa early gene promoter: sequences required for efficient in vitro and in vivo transcription. Nucleic Acids Res. 11, 7105–7117.PubMedCrossRefGoogle Scholar
  34. 34.
    ELKAIM, R., GODING, C., and KEDINGER, C. (1983). The adenovirus-2 EIIa early gene promoter: sequences required for efficient in vitro and in vivo transcription. Nucleic Acids Res. 11, 7105–7117.PubMedCrossRefGoogle Scholar
  35. 35.
    MIYAMOTO, N.G., MONCOLLIN, V., WINTZERITH, M., HEN, R., EGLY, J.M., and CHAMBON, P. (1984). Stimulation of in vitro transcription by the upstream element of the adenovirus-2 major late promoter involves a specific factor. Nucleic Acids Res. 12, 8779–8799.PubMedCrossRefGoogle Scholar
  36. 36.
    HEN, R., WINTZERITH, M., MIYAMOTO, N., and CHAMBON, P. Manuscript in preparation.Google Scholar
  37. 37.
    EVERETT, R.D., BATY, D., and CHAMBON, P. (1983). The repeated GC-rich motifs upstream from the TATA box are important elements of the SV40 early promoter. Nucleic Acids Res. 11, 2447–2464.PubMedCrossRefGoogle Scholar
  38. 38.
    FROMM, M. and BERG, P. (1983). Simian virus 40 early-and late-region promoter functions are enhanced by the 72-base pair repeat inserted at distant location and inverted orientations. J. Mol. Appl. Genet. 2, 127–135.PubMedGoogle Scholar
  39. 39.
    BATY, D., BARRERA-SALDANA, H.A., EVERETT, R.D., VIGNERON, M., and CHAMBON, P. (1984). Mutational dissection of the 21 bp repeat region of the SV40 early promoter reveals that it contains overlapping elements of the early-early and late-early promoters. Nucleic Acids Res. 12, 915–932.Google Scholar
  40. 40.
    McKNIGHT, S.L. (1982). Functional relationships between transcriptional control signals of the thymidine kinase gene of herpes simples virus. Cell 31, 355–365.PubMedCrossRefGoogle Scholar
  41. 41.
    EVERETT, R. (1983). DNA sequence elements required for regulated expression of the HHSV-i glycoprotein D gene lie within 83 bp of the RNA capsites. Nucleic Acids Res. 11, 6647–6666.PubMedCrossRefGoogle Scholar
  42. 42.
    PARSLOW, T.G., BLAIR, D.G., MURPHY, W., and GRANNER, D.K. (1984). Structure of the 5’ ends of immunoglobulin genes a novel conserved sequence. Proc. Natl. Acad. Sci. USA 81, 2650–2654.PubMedCrossRefGoogle Scholar
  43. 43.
    FALKNER, F.G. and ZACHAU, H.G. (1984). Correct transcription of an immunoglobulin K gene requires an upstream fragment containing conserved sequence elements. Nature 310, 71–74.PubMedCrossRefGoogle Scholar
  44. 44.
    FALKNER, F.G. and ZACHAU, H.G. (1982). Expression of mouse immunoglobulin genes in monkey cells. Nature 298, 286–288.PubMedCrossRefGoogle Scholar
  45. 45.
    NORTH, G. (1984). Multiple levels of gene control in eukaryotic cells. Nature 312, 308–309.PubMedCrossRefGoogle Scholar
  46. 46.
    PELHAM, H.R.B. and BIENZ, M. (1982). A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J. 1, 1473–1477.PubMedGoogle Scholar
  47. 47.
    DYNAN, W.S. and TJIAN, R. (1983). The promoter-specific transcription factor Spl binds to upstream sequences in the SV40 early promoter. Cell 35, 79–87.PubMedCrossRefGoogle Scholar
  48. 48.
    PARKER, C.S. and TOPOL, J. (1984). A Drosophila RNA polymerasee II factor binds to the regulatory site of an HSP70 gene. Cell 37, 273–283.PubMedCrossRefGoogle Scholar
  49. 49.
    GIDONI, D., DYNAN, W.S., and TJIAN, R. (1984). Multiple specific contacts between a mammalian transcription factor and its cognate promoters. Nature 312, 409–413.PubMedCrossRefGoogle Scholar
  50. 50.
    McKNIGHT, S.L., KINGSBURY, R.C., SPENCE, A., and SMITH, M. (1984). The distal transcription signals of the herpes virus TK gene share a common hexanucleotide control sequence. Cell 37, 253–262.Google Scholar
  51. 51.
    COCHRAN, M.D. and WEISSMANN, C. (1984). Modular structure of the ß-globin and the TK promoters. EMBO J. 3, 2453–2459.PubMedGoogle Scholar
  52. 52.
    MOREAU, P., HEN, R., WASYLYK, B., EVERETT, R., GAUB, M.P., and CHAMBON, P. (1981). The SV40 72 base pair repeat has a striking effect of gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res. 9, 6047–6068.PubMedCrossRefGoogle Scholar
  53. 53.
    BENOIST, C. and CHAMBON, P. (1981). In vivo sequence requirements of the SV40 early promoter region. Nature 290, 304–310.PubMedCrossRefGoogle Scholar
  54. 54.
    GRUSS, P., DHAR, R., and KHOURY, G. (1981). Simian virus 40 tandem repeated sequences as an element of the early promoter. Proc. Natl. Acad. Sci. USA 78, 943–947.PubMedCrossRefGoogle Scholar
  55. 55.
    GROSSCHEDL, R. and BIRNSTIEL, M.L. (1982). Delimitation of far upstream sequences required for maximal in vitro transcription of an H2A histone gene. Proc. Natl. Acad. Sci. USA 79, 297–301.PubMedCrossRefGoogle Scholar
  56. 56.
    BANERJI, J., RUSCONI, S., and SCHAFFNER, W. (1981). Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308.PubMedCrossRefGoogle Scholar
  57. 57.
    WASYLYK, B., WASYLYK, C., AUGEREAU, P., and CHAMBON, P. (1983b). The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell 32, 503–514.CrossRefGoogle Scholar
  58. 58.
    YANIV, M. (1982). Enhancing elements for activation of eukaryotic promoters. Nature 297, 17–18.PubMedCrossRefGoogle Scholar
  59. 59.
    KHOURY, G. and GRUSS, P. (1983). Enhancer elements. Cell 33, 313–314.PubMedCrossRefGoogle Scholar
  60. 60.
    GLUZMAN, Y. and SHENK, T., eds. (1983). “Enhancers and Eukaryotic Gene Expression.” Cold Spring tory, Cold Spring Harbor, New York.Google Scholar
  61. 61.
    GUARENTE, L.P. (1984). Yeast promoters: negative elements. Cell 36, 799–800.PubMedCrossRefGoogle Scholar
  62. 62.
    SHIMIZU, A. and HONJO, T. (1984). Immunoglobulin class switching. Cell 36, 801–803.PubMedCrossRefGoogle Scholar
  63. 63.
    DUNN, A.R. and GOUGH, N.M. (1984). Tissue-specific en- hancers. TIBS 11, 81–82.Google Scholar
  64. 64.
    KOLATA, G.B. (1984). New clues to gene regulation enhancer sequences seem to be involved in turning on genes and may themselves be regulated by a small group of proteins. Science 224, 588–589.PubMedCrossRefGoogle Scholar
  65. 65.
    YANIV, M. (1984). Regulation of eukaryotic gene expression by trans-activating proteins and cis-acting DNA elements. Biol. Cell 50, 203–216.Google Scholar
  66. 66.
    WASYLYK, B., WASYLYK, C., and CHAMBON, P. (1984). Short and long range activation by the SV40 enhancer. Nucleic Acids Res. 12, 5589–5608.PubMedCrossRefGoogle Scholar
  67. 67.
    AUGEREAU, P. and WASYLYK, B. (1984). The MLV and SV40 enhancers have a similar pattern of transcriptional activation. Nucleic Acids Res. 12, 8801–8818.PubMedCrossRefGoogle Scholar
  68. 68.
    HEN, R., BORRELLI, E., SASSONE-CORSI, P., and CHAMBON, P. (1983). An enhancer element is located 340 base pairs upstream from the adenovirus-2 E1A capsite. Nucleic Acids Res. 11, 8747–8760.Google Scholar
  69. 69.
    LAIMINS, I.A., GRUSS, P., POZZATTI, R., and KHOURY, G. (1984). Characterization of enhancer elements in the long terminal repeat of moloney murine sarcoma virus. J. Virol. 49, 183–189.PubMedGoogle Scholar
  70. 70.
    WEIHER, H., KOENIG, M., and GRUSS, P. (1983). Multiple point mutations affecting the simian virus 40 enhancer. Science 219, 626–631.PubMedCrossRefGoogle Scholar
  71. 71.
    HEARING, P. and SHENK, T. (1983). A duplicated enhancer element within the adenovirus type-5 E1A transcriptional control region. In: “Enhancers and Eukaryotic Gene Expression,” ( Y. Gluzman and T. Shenk, eds.) pp. 91–94. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  72. 72.
    GROSSCHEDL, R., MAECHLER, M., ROHRER, U., and BIRNSTIEL, M.I. (1983). A functional component of the sea urchin H2A gene modulator contains an extended sequence homology to a viral enhancer. Nucleic Acids Res. 11, 8123–8136.PubMedCrossRefGoogle Scholar
  73. 73.
    NORDHEIM, A. and RICH, A. (1983). Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303, 674–679.PubMedCrossRefGoogle Scholar
  74. 74.
    BANERJI, J., OLSON, L., and SCHAFFNER, W. (1983). A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33, 729–740.PubMedCrossRefGoogle Scholar
  75. 74.
    BANERJI, J., OLSON, L., and SCHAFFNER, W. (1983). A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33, 729–740.PubMedCrossRefGoogle Scholar
  76. 76.
    WEBER, F., DeVILLIERS, J., and SCHAFFNER, W. (1984). An SV40 “enhancer trap” incorporates exogenous enhancers or generates enhancers from its own sequences. Cell 36, 983–992.Google Scholar
  77. 77.
    SWIMMER, C. and SHENK, T. (1984). A viable simian virus 40 variant that carries a newly generated sequence reiteration in place of the normal duplicated enhancer element. Proc. Natl. Acad. Sci. USA 81, 6652–6656.PubMedCrossRefGoogle Scholar
  78. 78.
    DeVILLIERS, J., OLSON, L., BANERJI, J., and SCHAFFNER, W. (1983). Cold Spring Harbor Symp. on Quant. Biol., Vol. XLVII, pp7–1311–919. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  79. 79.
    KADESCH, T.R. and BERG, P. (1983). Effects of the position of the 72-bp enhancer segment on transcription from the SV40 early region promoter. In: “Enhancers and Eukaryotic Gene Expression,” ( Y. Gluzman and T. Shenk, eds.) pp. 2127. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  80. 80.
    WANG, J.C. (1983). In: “Genetics Rearrangement,” (K.F. Chater, C.A. Cullis, D.A. Hopwood, A.W.B. Johnston, and H. Wolhouse, eds.) pp. 1–26. Sinauer, Amherst, Massachusetts.Google Scholar
  81. 81.
    CHAMBON, P. (1975). Eukaryotic RNA polymerases. Ann. Rev. Biochem. 44, 613–633.PubMedCrossRefGoogle Scholar
  82. 82.
    MIRKOVITCH, J., MIRAULT, M.E., and LAEMMLI, U.K. (1984). Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39, 223–232.PubMedCrossRefGoogle Scholar
  83. 83.
    CIEJEK, E.M., TSAI, M., and O’MALLEY, B.W. (1983). Actively transcribed genes are associated with the nuclear matrix. Nature 306, 607–609.PubMedCrossRefGoogle Scholar
  84. 84.
    ROBINSON, S.T., NELKIN, B.D., and VOGELSTEIN, B. (1982). The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells. Cell 28, 99–106.PubMedCrossRefGoogle Scholar
  85. 85.
    COOK, P.R. and BRAZELL, I.A. (1976). Conformational constraints in nuclear DNA. J. Cell. Sci. 22, 287–302.PubMedGoogle Scholar
  86. 86.
    SCOTT, W.A. and WIGMORE, D.J. (1978). Sites in simian virus 40 chromatin which are preferentially cleaved by endonucleases. Cell 15, 1511–1518.PubMedCrossRefGoogle Scholar
  87. 87.
    WALDECK, W., FOHRING, B., CHOWDHURY, K., GRUSS, P., and SAUER, G. (1978). Origin of DNA replication in papovavirus chromatin is recognized by endogenous endonuclease. Proc. Natl. Acad. Sci. USA 75, 5964–5968.PubMedCrossRefGoogle Scholar
  88. 88.
    WIGMORE, D.J., EATON, R.W., and SCOTT, W.A. (1980). Endonuclease-sensitive regions in SV40 chromatin from cells infected with duplicated mutants. Virology 104, 462–473.PubMedCrossRefGoogle Scholar
  89. 89.
    SUNDIN, O. and VARSCHAVSKY, A. (1979). Staphylococcal nuclease makes a single non-random cut in the simian virus 40 viral minichromosome. J. Mol. Biol. 132, 535–546.PubMedCrossRefGoogle Scholar
  90. 90.
    VARSHAVSKY, A.J., SUDIN, O., and BOHN, M. (1979). A stretch of “late” SV40 viral DNA about 400 bp long which includes the origin of replication is specifically exposed in SV40 minichromosomes. Cell 16, 453–466.PubMedCrossRefGoogle Scholar
  91. 91.
    SARAGOSTI, S., MOYNE, G., and YANIV, M. (1980). Absence of nucleosomes in a fraction of SV40 chromatin between the origin of replication and the region coding for the late leader RNA. Cell 20, 65–73.PubMedCrossRefGoogle Scholar
  92. 92.
    JAKOBOVITS, E.B., BRATOSIN, S., and ALONI, Y. (1980). A nucleosome-free region in SV40 minichromosomes. Nature 285, 263–265.PubMedCrossRefGoogle Scholar
  93. 93.
    JONGSTRA, J., REUDELHUBER, T.L., OUDET, P., BENOIST, C., CHAE, C.B., JELTSCH, J.M., MATHIS, D., and CHAMBON, P. (1984). Induction of altered chromatin structures by simian virus 40 enhancer and promoter elements. Nature 307, 708–714.PubMedCrossRefGoogle Scholar
  94. 94.
    PARSLOW, T.G., and GRANNER, D.K. (1983). Structure of a nuclease-sensitive region inside the immunoglobin kappa gene: evidence for a role in gene regulation. Nucleic Acids Res. 11, 4775–4792.PubMedCrossRefGoogle Scholar
  95. 95.
    ZARET, K.S. and YAMAMOTO, K.R. (1984). Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell 38, 29–38.PubMedCrossRefGoogle Scholar
  96. 96.
    INNIS, J. and SCOTT, W.A. (1984). DNA replication and chromatin structure of simian virus 40 insertion mutants. Mol. Cell. Biol. 4, 1499–1507.Google Scholar
  97. 97.
    SCHOLER, H.R. and GRUSS, P. (1984). Specific interaction between enhancer-containing molecules and cellular components. Cell 36, 403–411.PubMedCrossRefGoogle Scholar
  98. 98.
    WILDEMAN, A.G., SASSONE-CORSI, P., GRUNDSTROM, T., ZENKE, T., and CHAMBON, P. (1984). Stimulation of in vitro transcription from the SV40 early promoter by the enhancer involves a specific trans-acting factor. EMBO J. 3, 3129–3133.Google Scholar
  99. 99.
    SASSONE-CORSI, P., DOUGHERTY, J., WASYLYK, B., and CHAMBON, P. (1984). Stimulation of in vitro transcription from heterologous promoters by the SV40 enhancer. Proc. Natl. Acad. Sci. USA 81, 308–312.Google Scholar
  100. 100.
    SASSONE-CORSI, P., WILDEMAN, A., and CHAMBON, P. (1984). A trans-acting factor is responsible for the SV40 enhancer activity. Nature 313, 458–463.CrossRefGoogle Scholar
  101. 101.
    CHANDLER, V.L., MALER, B.A., and YAMAMOTO, K.R. (1983). DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33, 489–499.PubMedCrossRefGoogle Scholar
  102. 102.
    SCHEIDEREIT, C. and BEATO, M. (1984). Contacts between hormone receptor and DNA double helix within a glucocorticoid regulatory element of mouse mammary tumor virus. Proc. Natl. Acad. Sci. USA 81, 3029–3033.PubMedCrossRefGoogle Scholar
  103. 103.
    TRAVERS, A. (1983). Protein contacts for promoter location in eukaryotes. Nature 303, 755.PubMedCrossRefGoogle Scholar
  104. 104.
    PTASHNE, M. (1984). DNA-binding proteins. Nature 308, 753–754.PubMedCrossRefGoogle Scholar
  105. 105.
    CHAMBON, P., DIERICH, A., GOUB, M.P., JAKOWLEV, S.B., JONGSTRA, J., KRUST, A., LePENNEC, J.P., OUDET, P., and REUDELHUBER, T. (1984). Promoter elements of genes coding for proteins and modulation of transcription by oestrogens and progesterone. In: “Recent Progress in Hormone Research, The Proceedings of the Laurentian Hormone Conference,” Vol. 40 ( R.O. Greep, ed.) pp. 1–42. Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • B. Wasylyk
    • 1
  1. 1.Laboratoire de Génétique Moléculaire des Eucaryotes de CNRS Unité 184 de Biologie Moleculaire et de Génie Génétique de l’INSERM Faculté de MédecineStrasbourg-CedéxFrance

Personalised recommendations