Advertisement

DNase I Hypersensitive Sites: A Structural Feature of Chromatin Associated with Gene Expression

  • Graham H. Thomas
  • Esther Siegfried
  • Sarah C. R. Elgin
Part of the NATO ASI Series book series (NSSA, volume 101)

Abstract

Investigations in the field of gene regulation in eukaryotes have identified several conserved sequences in and around genes. Such sequences are presumed, or have been demonstrated, to be important in promoting, terminating, or otherwise regulating gene transcription. (For examples see references 1–3 and the chapter by Wasylyk, this volume). Similarly, there has been a growing realization of the importance of the role of chromatin structure in gene expression (see reference 4 for an extensive review). Specifically, potentially transcribed genes have been shown to be preferentially sensitive to digestion by the enzyme deoxyribonuclease I (DNase I) (5), and to lie within large domains of chromatin containing 10–100 kilobase pairs of DNA that are more sensitive to this enzyme than are the surrounding regions (6). Within such regions exist more localized chromatin sites which are hypersensitive to DNase I. These “DH sites” are the subject of this review.

Keywords

Chromatin Structure Long Terminal Repeat Thymidine Kinase Globin Gene Mouse Mammary Tumor Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GROSSCHEDL, R., WASYLYK, B., CHAMBON, P., and BIRNSTEIL, M.L. (1981). Point mutations in the TATA box curtails the expression of sea urchin H2A histone gene in vivo. Nature 294, 178.PubMedCrossRefGoogle Scholar
  2. 2.
    STRUHL, K. (1983). Promoter elements, regulatory elements, and chromatin structure of the yeast HIS 3 gene. Cold Spring Harbor Symp. Quant. Biol. 47, 901.PubMedCrossRefGoogle Scholar
  3. 3.
    McKNIGHT, S.L. (1983). Constitutive transcriptional control signals of the herpes simplex virus tk gene. Cold Spring Harbor Symp. Quant. Biol. 47, 945.PubMedCrossRefGoogle Scholar
  4. 4.
    CARTWRIGHT, I.L., KEENE, M.A., HOWARD, G.C., ABMAYR, S.M., FLEISCHMANN, G., LOWENHAUPT, K., and ELGIN, S.C.R. (1982). Chromatin structure and gene activity: the role of nonhistone chromosomal proteins. CRC Crit. Rev. Biochem. 13, 1.PubMedCrossRefGoogle Scholar
  5. 5.
    WEINTRAUB, H. and GROUDINE, M. (1976). Chromosome subunits in active genes have an altered conformation. Science 193, 848.PubMedCrossRefGoogle Scholar
  6. 6.
    LAWSON, G.M,. KNOLL, B.J., MARCH, C.M., WOO, S.L.C., TSAI, M.J., and O’MALLEY, B.J. (1982). Definition of 5’ and 3’ structural boundaries of the chromatin domain containing the ovalbumin multigene family. J. Biol. Chem. 257, 1501.PubMedGoogle Scholar
  7. 7.
    PARSLOW, T.G. and GRANNER, D.K. (1983). Structure of a nuclease sensitive region inside the immunoglobulin kappa gene: evidence for a role in gene regulation. Nucleic Acids Res. 11, 4775.PubMedCrossRefGoogle Scholar
  8. 8.
    BURCH, J.B.E. and WEINTRAUB, H. (1983). Temporal order of chromatin structural changes associated with activation of the major chicken vitellogenin gene. Cell 33, 65.PubMedCrossRefGoogle Scholar
  9. 9.
    SEIBENLIST, U., HENNIGHAUSEN, L., SATTEY, J., and LEDER, P. (1984). Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. Cell 37, 381.CrossRefGoogle Scholar
  10. 10.
    NEDOSPASOV, S.A. and GEORGIEV, G.P. (1980). Non-random cleavage of SV40 DNA in the compact minichromosome and free in solution by micrococcal nuclease. Biochem. Biophys. Res. Comm. 92, 532.PubMedCrossRefGoogle Scholar
  11. 11.
    WU, C. (1980). The 5’ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286, 854.PubMedCrossRefGoogle Scholar
  12. 12.
    SOUTHERN, E.M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503.PubMedCrossRefGoogle Scholar
  13. 13.
    WU, C. (1984). Two protein-binding sites in chromatin implicated in the activation of heat shock genes. Nature 309, 229.PubMedCrossRefGoogle Scholar
  14. 14.
    COSTLOW, N. and LIS, J.T. (1984). High resolution mapping of DNase I hypersensitive sites of Drosophila heat shock genes in Drosophila melanogaster and Saccharomyces cervisiae. Mol. Cell. Biol. 4, 1853.PubMedGoogle Scholar
  15. 15.
    KEENE, M.A., CORCES, V., LOWENHAUPT, K., and ELGIN, S.C.R. (1981). DNase I hypersensitive sites in Drosophila chromatin occur at the 5’ ends of regions of transcription. Proc. Natl. Acad. Sci. USA 78, 143.PubMedCrossRefGoogle Scholar
  16. 16.
    SWEET, R.W., CHAO, M.V., and AXEL, R. (1982). The structure of the thymidine kinase promoter: nuclease hypersensitivity correlates with expression. Cell 31, 347.PubMedCrossRefGoogle Scholar
  17. 17.
    McKNIGHT, S.L. and KINGSBURY, R. (1982). Transcriptional control signals of a eukaryotic protein coding gene. Science 217, 316.PubMedCrossRefGoogle Scholar
  18. 18.
    WU, C. and GILBERT, W. (1981). Tissue-specific exposure of chromatin structure at the 5’ terminus of the rat preproinsulin II gene. Proc. Natl. Acad. Sci. USA 78, 1577.PubMedCrossRefGoogle Scholar
  19. 19.
    WALKER, M.D., EDLUND, T., BOULET, A.M., and RUTTER, W.J. (1983). Cell-specific expression controlled by the 5’ flanking region of insulin and chymotrypsin genes. Nature 306, 577.CrossRefGoogle Scholar
  20. 20.
    SENEAR, A.W. and PALMITER, R.D. (1983). Expression of the mouse metallothionein-1 gene alters the nuclease hypersensitivity of its 5’ regulatory region. Cold Spring Harbor Symp. Quant. Biol. 47, 539.PubMedCrossRefGoogle Scholar
  21. 21.
    SLEDZIEWSKI, A. and YOUNG, E.T. (1982). Chromatin conformational changes accompany transcriptional activation of a glucose-repressed gene in Saccharomyces cervisiae. Proc. Natl. Acad. Sci. USA 79, 253.PubMedCrossRefGoogle Scholar
  22. 22.
    WONG, Y-C., O’CONNELL, P., ROSBASH, M., and ELGIN, S.C.R. (1981). DNase I hypersensitive sites of the chromatin for Drosophila melanogaster ribosomal protein 49 gene. Nucleic Acids Res. 9, 6979.CrossRefGoogle Scholar
  23. 23.
    GROUDINE, M. and CASIMIR, C. (1984). Post-transcriptional regulation of the chicken thymidine kinase gene. Nucleic Acids Res. 12, 1427.PubMedCrossRefGoogle Scholar
  24. 24.
    SCHUBACH, W. and GROUDINE, M. (1984). Alteration of c-myc chromatin structure by avian leukosis virus integration. Nature 307, 702.PubMedCrossRefGoogle Scholar
  25. 25.
    BRYAN, P.N., OLAH, J., and BIRNSTEIL, M.L. (1983). Major changes in the 5’ and 3’ chromatin structure of sea urchin histone genes accompany their activation and inactivation in development. Cell 33, 843.PubMedCrossRefGoogle Scholar
  26. 26.
    SAMAL, B., WORCEL, A., LOUIS, C., and SCHEDL, P. (1981). Chromatin structure of the histone genes of D. melanogaster. Cell 23, 401.PubMedCrossRefGoogle Scholar
  27. 27.
    ZARET, K.S. and YAMAMOTO, K.R. (1984). Reversible and persistent changes in chromatin structure accompanying activation of a glucocorticoid-dependent enhancer element. Cell 38, 29.PubMedCrossRefGoogle Scholar
  28. 28.
    LOWENHAUPT, K., CARTWRIGHT, I.L., KEENE, M.A., ZIMMERMAN, L.M., and ELGIN, S.C.R. (1983). Chromatin structure in pre-and post-blastula embryos of Drosophila. Devel. Biol. 99, 194.CrossRefGoogle Scholar
  29. 29.
    LaVOLPE, A., TAGGERT, M., McSTAY, B., and BIRD, A. (1983). DNase I hypersensitive sites at promoter-like sequences in the spacer of Xenopus laevis and Xenopus borealis ribosomal DNA. Nucleic Acids Res. 11, 5361.Google Scholar
  30. 30.
    BORCHSENIUS, S., BONVEN, B., LEER, J.C., and WESTERGAARD, O. (1981). Nuclease-sensitive regions on the extrachromosomal r-chromatin from Tetrahymena pyriformis. Eur. J. Biochem. 117, 245.PubMedCrossRefGoogle Scholar
  31. 31.
    PALEN, T., GOTTSCHLING, D.S., and CECH, T. (1982). Transcribed and non-transcribed regions of the ribosomal RNA gene of Tetrahymena exhibit different chromatin structures. J. Cell Biochem. Suppl. 6, 336.Google Scholar
  32. 32.
    CARTWRIGHT, I.L. and ELGIN, S.C.R. (1984). Chemical foot-printing of 5S RNA chromatin in embryos of Drosophila melanogaster. EMBO J. 3, 3101.PubMedGoogle Scholar
  33. 33.
    SHERMOEN, A.W. and BECKENDORF, S.K. (1982). A complex of interacting DNase I hypersensitive sites near the Drosophila glue protein gene, sgs 4. Cell 29, 601.PubMedCrossRefGoogle Scholar
  34. 34.
    STALDER, J., LARSEN, A., ENGEL, J.D., DOLAN, M., GROUDINE, M., and WEINTRAUB, H. (1980). Tissue-specific DNA cleavages in the globin chromatin domain introductd by DNase I. Cell 20, 451.PubMedCrossRefGoogle Scholar
  35. 35.
    WEINTRAUB, H., LARSEN, A., and GROUDINE, M. (1981). Laglobin gene switching during the development of chicken embryos: expression and chromosome structure. Cell, 24, 333.PubMedCrossRefGoogle Scholar
  36. 36.
    McGHEE, J.D., WOOD, W.I., DOLAN, M., ENGEL, J.D., and FELSENFELD, G. (1981). A 200 base pair region at the 5’ end of the chicken adult ß-globin gene is accessible to nuclease digestion. Cell 27, 45.PubMedCrossRefGoogle Scholar
  37. 37.
    McKEON, C., PASTAN, I., and DE CROMBRUGGHE, B. (1984). DNase I sensitivity of the a2(I) collagen gene: correlation with its expression but not its methylation pattern. Nucleic Acids Res., 12, 3491.PubMedCrossRefGoogle Scholar
  38. 38.
    FRITTON, H.P., SIPPEL, A.E., and IGO-KEMENES, I. (1983). Nuclease hypersensitive sites in the chromatin domain of the chicken lysozyme gene. Nucleic Acids Res. 11, 3467.PubMedCrossRefGoogle Scholar
  39. 39.
    KAYE, J.S., BELLARD, M., DRETZEN, G., BELLARD, F., and CHAMBON, P. (1984). A close association between sites of DNase I hypersensitivity and sites of enhanced cleavage by micrococcal nuclease in the 5’ flanking region of the actively transcribed ovalbumin gene. EMBO J. 3, 1137.PubMedGoogle Scholar
  40. 40.
    DURRIN, L.K., WEBER, J.L., and GORSKI, J. (1984). Chromatin structure, transcription, and methylation of the pro-lactin gene domain in pituitary tumors of Fischer 344 rats. J. Biol. Chem. 259, 7086.PubMedGoogle Scholar
  41. 41.
    VARSHAVSKY, A.J., SUNDIN, 0., and BOHN, M. (1979). A stretch of “late” SV40 viral DNA about 400 bp long, which includes the origin of replication, is specifically exposed in SV40. Cell 16, 453.PubMedCrossRefGoogle Scholar
  42. 42.
    SARAGOSTI, S., MOYNE, G., and YANIV, M. (1980). Absence of nucleosomes in a fraction of SV40 chromatin between the origin of replication and the region coding for the late leader RNA. Cell 20, 65.PubMedCrossRefGoogle Scholar
  43. 43.
    HERBOMEL, P., SARAGOSTI, D., BLANGY, D., and YANIV, M., (1981). Fine structure of the origin-proximal DNase I hypersensitive region in wild-type and EC mutant polyoma. Cell 25, 651.PubMedCrossRefGoogle Scholar
  44. 44.
    PALEN, T.E. and CECH, T.R. (1984). Chromatin structure at the replication origins and transcription-initiation region of the ribosomal RNA genes of Tetrahymena. Cell 36, 933.PubMedCrossRefGoogle Scholar
  45. 45.
    BLOOM, K.S. and CARBON, J. (1982). Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell 29, 305.PubMedCrossRefGoogle Scholar
  46. 46.
    NASMYTH, K.A. (1982). The regulation of yeast mating-type chromatin structure by SIR: an action at a distance affecting both transcription and transposition. Cell 30, 567.PubMedCrossRefGoogle Scholar
  47. 47.
    CHUNG, S-Y., FOLSOM, V., and WOOLEY, J. (1983). DNase I hypersensitive sites in the chromatin of immunoglobulin k light chain genes. Proc. Natl. Acad. Sci USA 80, 2427.PubMedCrossRefGoogle Scholar
  48. 48.
    MILLS, F.E., FISHER, L.M., KURODA, R., FORD, A.M., and GOULD, H.J. (1983). DNase I hypersensitive sites in the chromatin of human u immunoglobulin heavy-chain genes. Nature 306, 809.PubMedCrossRefGoogle Scholar
  49. 49.
    QUEEN, C. and BALTIMORE, D. (1983). Immunoglobulin gene transcription is activated by downstream sequence elements. Cell 33, 741.PubMedCrossRefGoogle Scholar
  50. 50.
    BANERJI, J., OLSEN, L., and SCHAFFNER, W. (1983). A lymphocyte specific cellular enhancer is located downstream of the joining region in immunuglobulin heavy chain genes. Cell 33, 729.PubMedCrossRefGoogle Scholar
  51. 51.
    GILLES, S.D., MORRISON, S.L., OI, V.I., and TONEGAWA, S. (1983). A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33, 717.CrossRefGoogle Scholar
  52. 52.
    CARTWRIGHT, I.’L., HERTZBERG, R.P., DERVAN, P.B., and ELGIN, S.C.R. (1983). Cleavage of chromatin with methidium propyl-EDTA.iron(II). Proc. Natl. Acad. Sci. USA 80, 3213.PubMedCrossRefGoogle Scholar
  53. 53.
    JAKOBOVITIS, E.B., BRATOSIN, S., and ALONI, Y. (1980). A nucleosome-free region in SV40 minichromosomes. Nature 285, 263.CrossRefGoogle Scholar
  54. 54.
    KARPOV, V.L., PREOBRAZHENSKAYA, O.V., and MIRZABECKOV, A.D. (1984). Chromatin structure of hsp 70 genes activated by heat shock: selective removal of histones from the coding region and their absence from the 5’ region. Cell 36, 423.PubMedCrossRefGoogle Scholar
  55. 55.
    JACK, R.S., GEHRING, W.J., and BRACK, C. (1981). Protein component from Drosophila larval nuclei showing sequence specificity for a short region near a major heat shock protein gene. Cell 24, 321.PubMedCrossRefGoogle Scholar
  56. 56.
    DAVISON, B.L., EGLY, J.M., MULVIHILL, E.R., and CHAMBON, P. (1983). Formation of stable preinitiation complexes between eukaryotic class B transcription factors and promoter sequences. Nature 301, 680.PubMedCrossRefGoogle Scholar
  57. 57.
    DAVISON, B.L., MULVIHILL, E.R., EGLY, J.M., and CHAMBON, P. (1983). Interaction of eukaryotic class B transcription factors and chick progesterone-receptor complex with con-albumin promoter sequences. Cold Spring Harbor Symp. Quant. Biol. 47, 9.CrossRefGoogle Scholar
  58. 58.
    PARKER, C.S. and TOPOL, J. (1984). A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell 37, 273.PubMedCrossRefGoogle Scholar
  59. 59.
    DYNAN, W.S. and TJIAN, R. (1983). The promoter-specific transcription factor Spl binds to upstream sequences in the SV40 early promoter. Cell 35, 79.PubMedCrossRefGoogle Scholar
  60. 60.
    SCHOLER, H.R. and GRUSS, P. (1984). Specific interaction between enhancer-containing molecules and cellular components. Cell 36, 403.PubMedCrossRefGoogle Scholar
  61. 61.
    DE VILLERS, J., OLSEN, L., TYNDALL, C., and SCHAFFNER, W. (1982). Transcriptional “enhancers” from SV40 and polyomavirus show a cell type preference. Nucleic Acids Res. 10, 7965.CrossRefGoogle Scholar
  62. 62.
    BYRNE, B.J., DAVIS, M.S., YAMAGUCHI, J., BERGSMA, D.J., and SUBRAMANIAN, K.N. (1983). Definition of the simian virus 40 early promoter region and demonstration of a host range bias in the enhancement effect of the simian virus 40 72 base pair repeat. Proc. Natl. Acad. Sci. USA 80, 721.PubMedCrossRefGoogle Scholar
  63. 63.
    FROMM, M. and BERG, P. (1983). Transcription in vivo from SV40 early promoter deletion mutants without repression by large T antigen. Mol. Cell. Biol. 3, 991.PubMedGoogle Scholar
  64. 64.
    JONGSTRA, J., REUDELHUBER, T.L., OUDET, P., BENOIST, C., CHAE, C-B., JELTSCH, J-M., MATHIS, D.J., and CHAMBON, P. (1984). Induction of altered chromatin structures by simian virus 40 enhancer and promoter elements. Nature 307, 708.PubMedCrossRefGoogle Scholar
  65. 65.
    JAKOBOVITIS, E.B., BRATOSIN, S., and ALONI, Y. (1982). Formation of a nucleosome free region in SV40 minichromosomes is dependent upon a restricted segment of DNA. Virology 120, 340.CrossRefGoogle Scholar
  66. 66.
    GERARD, R.D., WOODWORTH-GUTAI, M., and SCOTT, W.A. (1982). Deletion mutants which affect the nuclease sensitive site in simian virus 40 chromatin. Mol. Cell. Biol. 2, 782.PubMedGoogle Scholar
  67. 67.
    McGINNIS, W., SHERMOEN, A.W., and BECKENDORF, S.K. (1983). A transposable element inserted just 5’ to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34, 75.PubMedCrossRefGoogle Scholar
  68. 68.
    McGINNIS, W., SHERMOEN, A.W., HEEMOKERK, J., and BECKENDORF, S.K. (1983). DNA sequence changes in an upstream DNase I hypersensitive region are correlated with reduced gene expression. Proc. Natl. Acad. Sci. USA 80, 1063.PubMedCrossRefGoogle Scholar
  69. 69.
    SIMPSON, R.T. and KUNZLER, P. (1979). Chromatin core particles formed from the inner histones and synthetic polydeoxyribonucleotides of defined sequence. Nucleic Acids Res. 6, 1387.PubMedCrossRefGoogle Scholar
  70. 70.
    RHODES, D. (1979). Nucleosome cores reconstituted from poly(dA-dT) and the octamer of histones. Nucleic Acids Res. 6, 1805.PubMedCrossRefGoogle Scholar
  71. 71.
    LARSEN, A. and WEINTRAUB, H. (1982). An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin. Cell 29, 609.PubMedCrossRefGoogle Scholar
  72. 72.
    NICKOL, J.M. and FELSENFELD, G. (1983). DNA conformation at the 5’ end of the chicken adult ß-globin gene. Cell 35, 467.PubMedCrossRefGoogle Scholar
  73. 73.
    SCHON, E., EVANS, T., WELSH, J., and EFSTRATIADIS, A. (1983). Conformation of promoter DNA: fine mapping of S1-hypersensitive sites. Cell 35, 837.PubMedCrossRefGoogle Scholar
  74. 74.
    KOHWI-SHIGEMATSU, T., GELINAS, R., WEINTRAUB, H. (1983). Detection of an altered DNA conformation at specific sites in chromatin and supercoiled DNA. Proc. Natl. Acad. Sci. USA 80, 4389.PubMedCrossRefGoogle Scholar
  75. 75.
    SHEN, C.K. (1983). Superhelicity induces hypersensitivity of a human polypyrimidine-polypurine DNA sequence in the human a2-al globin intergenic region to S1 nuclease digestion - high resolution mapping of the clustered cleavage sites. Nucleic Acids Res. 11, 7899.PubMedCrossRefGoogle Scholar
  76. 76.
    WEINTRUAB, H. (1983). A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin. Cell 32, 1191.CrossRefGoogle Scholar
  77. 77.
    MACE, H.A.F., PELHAM, H.R.B., and TRAVERS, A.A. (1983). Association of an S1 nuclease sensitive structure with short direct repeats 5’ of Drosophila heat shock genes. Nature 304, 555.PubMedCrossRefGoogle Scholar
  78. 78.
    SELLECK, S.B., ELGIN, S.C.R., and CARTWRIGHT, I.L. (1984). Supercoil-dependent features of DNA structure at Drosophila locus 67B1. J. Mol. Biol. 178, 17.PubMedCrossRefGoogle Scholar
  79. 79.
    NORDHEIM, A. and RICH, A. (1983). The sequence (dC-dA)n(dG-dT)n forms left handed Z-DNA in negatively supercoiled plasmids. Proc. Natl. Acad. Sci. USA 80, 1821.PubMedCrossRefGoogle Scholar
  80. 80.
    NICKOL, J., BERE, J., and FELSENFELD, G. (1982). Effect of the B-Z transition in poly(dG-m5dC)-poly(dG-m5dC) on nucleosomal formation. Proc. Natl. Acad. Sci. USA 79, 1771.PubMedCrossRefGoogle Scholar
  81. 81.
    NORDHEIM, A. and RICH, A. (1983). Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303, 674.PubMedCrossRefGoogle Scholar
  82. 82.
    EMERSON, B.M. and FELSENSELD, G. (1984). Specific factor conferring nuclease hypersensitivity at the 5’ end of the chicken adult ß-globin gene. Proc. Natl. Acad. Sci. USA 81, 95.PubMedCrossRefGoogle Scholar
  83. 83.
    WOODLAND, H.R. (1982). Stable gene expression in vitro. Nature 297, 457.PubMedCrossRefGoogle Scholar
  84. 84.
    EISSENBERG, J.C. KIMBRELL, D.A., FRISTROM, J.W., and ELGIN, S.C.R. (1984). Chromatin structure at the 44D larval cuticle gene locus in Drosophila: the effect of a transposable element insertion. Nucleic Acids Res. 12, 9025.PubMedCrossRefGoogle Scholar
  85. 85.
    CHISWELL, D.J., GILLESPIE, D.A., and WYKE, J.A. (1982). The changes in proviral chromatin that accompany morphological variation in avian sarcoma virus infected rat cells. Nucleic Acids Res. 10, 3967.PubMedCrossRefGoogle Scholar
  86. 86.
    VAN DER PLUTTEN, H., QUINT, W., VERMA, I.M. and BERNS, A. (1982). Moloney murine leukemia virus-induced tumors: recombinant proviruses in active chromatin regions. Nucleic Acids Res. 10, 577.CrossRefGoogle Scholar
  87. 87.
    SARAGOSTI, S., CEREGHINI, S., and YANIV, M. (1982). Fine structure of the regulatory region of simian virus 40 mini-chromosomes revealed by DNase I digestion. J. Mol. Biol. 160, 133.PubMedCrossRefGoogle Scholar
  88. 88.
    BONVEN, B.J. and WESTERGAARD, 0. (1982). DNase I hypersensitive regions correlate with site specific endogenous nuclease activity on the r-chromatin of Tetrahymena. Nucleic Acids Res. 10, 7593.PubMedCrossRefGoogle Scholar
  89. 89.
    GOCKE, E., BONVEN, B.J., and WESTERGAARD, 0. (1983). A site and strand specific nuclease activity with analogies to topoisomerase I frames the rRNA gene in Tetrahymena. Nucleic Acids Res. 11, 7661.PubMedCrossRefGoogle Scholar
  90. 90.
    SHEFFERY, M., RIFKIND, R.A., and MARKS, P.A. (1982). Murine erythroleukemia cell differentiation: DNase I hypersensitivity and DNA methylation near the globin genes. Proc. Natl. Acad. Sci. USA 79, 1180.PubMedCrossRefGoogle Scholar
  91. 91.
    MACLEOD, D. and BIRD, A. (1982). DNase I sensitivity and methylation of active versus inactive rRNA genes in Xenopus species hybrids. Cell 29, 211.PubMedCrossRefGoogle Scholar
  92. 92.
    GROUDINE, M. and WEINTRAUB, H. (1982). Propagation of globin DNase I hypersensitive sites in absence of factors required for induction: a possible mechanism for determination. Cell 30, 131.PubMedCrossRefGoogle Scholar
  93. 93.
    CEREGHINI, S. and YANIV, M. (1984). Assembly of transfected DNA into chromatin: structural changes in the origin-promoter-enhancer region upon replication. EMBO J. 3, 1243.PubMedGoogle Scholar
  94. 94.
    BURCH, J.B.E. (1984). Indentification and sequence analy sis of the 5’ end of the major chicken vitellogenin gene. Nucleic Acids Res. 12, 1117.PubMedCrossRefGoogle Scholar
  95. 95.
    GRIFFIN-SHEA, R., THIREOS, G., and KAFATOS, F.C. (1982). Organization of a cluster of four chorion genes in Drosophila and its relationship to developmental expression and amplification. Developmental Biol. 91, 325.CrossRefGoogle Scholar
  96. 96.
    SHEFFERY, M., MARKS, P.A., and RIFKIND, R.A. (1984). Gene expression in murine erythroleukemia cells, transcriptional control and chromatin structure of the al-globin gene. J. Mol. Biol. 172, 417.PubMedCrossRefGoogle Scholar
  97. 97.
    GROUDINE, M., KOHWI-SHIGEMATSU, T., GELINAS, R., STAMATOYANNOPOULOS, G., and PAPAYANNOPOULOS, T. (1983). Human fetal to adult hemoglobin switching: changes in chromatin structure of the 13-globin gene locus. Proc. Natl. Acad. Sci. USA 80, 7551.PubMedCrossRefGoogle Scholar
  98. 98.
    TUAN, D. and LONDON, I.M. (1984). Mapping of DNase I hypersensitive sites in the upstream DNA of human embryonic e-globin gene in K562 leukemia cells. Proc. Natl. Acad. Sci. USA 81, 2718.PubMedCrossRefGoogle Scholar
  99. 99.
    GROUDINE, M., EISENMAN, R., and WEINTRAUB, H. (1981). Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 292, 311.PubMedCrossRefGoogle Scholar
  100. 100.
    BECKER, P., RENKAWITZ, R., and SCHUTZ, G. (1984). Tissue specific DNase I hypersensitive sites in the 5’-flanking sequences of the tryptophan oxygenase and the tryptophan aminotransferase genes. EMBO J. 3, 2015.PubMedGoogle Scholar
  101. 101.
    WEINTRAUB, H., BEUG, G., GROUDINE, M., and GRAF, T. (1982). Temperature-sensitive changes in the structure of a globin chromatin in lines of red cell precursors transformed by a ts-AEV virus. Cell 28, 931.PubMedCrossRefGoogle Scholar
  102. 102.
    FRITTON, H.P., IGO-KEMENES, T., NOWOCK,MJ., STRECH-JURK, U., THEISEN, M., and SIPPEL, A.E. (1984). Alternative sets of DNase I hypersensitive sites characterize the various functional states of the chicken lysozyme gene. Nature 311, 163.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Graham H. Thomas
    • 1
  • Esther Siegfried
    • 1
  • Sarah C. R. Elgin
    • 1
  1. 1.Department of BiologyWashington UniversitySt. LouisUSA

Personalised recommendations