Mitotic Chromosome Structure: An Update, December 1984

  • William C. Earnshaw
Part of the NATO ASI Series book series (NSSA, volume 101)


Even though the study of mitotic chromosomes dates back to the 19th century, little is known about the details of chromosome architecture and the mechanism of chromosome condensation at mitosis (for reviews see references 1 and 2). In this review, I will briefly describe the current models of chromosome architecture and subsequently examine the current status of the chromosome scaffold model in greater depth.


Sister Chromatid Metaphase Chromosome Nuclear Matrix Mitotic Chromosome Meiotic Prophase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WILSON, E.B. (1911). “The Cell in Development and Inheritance.” Macmillan Co., London.Google Scholar
  2. 2.
    PAULSON, J.R. (1982). Chromatin and chromosomal proteins. In: “Electron Microscopy of Proteins,” Vol. 3 (R. Harris, é3’.) pp. 77–134. Academic Press, New York.Google Scholar
  3. 3.
    DuPRAW, E.J. (1965). Macromolecular organization of nuclei and chromosomes: a folded fibre model based on whole-mount electron microscopy. Nature 206, 338–343.Google Scholar
  4. 4.
    DuPRAW, E.J. (1966). Evidence for a “folded-fibre” organization in human chromosomes. Nature 209, 577–581.PubMedCrossRefGoogle Scholar
  5. 5.
    COMINGS, D.E. (1978). Mechanisms of chromosome banding and implications for chromosome structure. Ann. Rev. Genet. 12, 25–46.PubMedCrossRefGoogle Scholar
  6. 6.
    McGhee, J.D. and FELSENFELD, G. (1980). Nucleosome structure. Ann. Rev. Biochem. 49, 1115–1156.PubMedCrossRefGoogle Scholar
  7. 7.
    MANTON, I. (1950). The spiral structure of chromosomes. Biol. Rev. Cambridge Phil. Soc. 25, 486–508.CrossRefGoogle Scholar
  8. 8.
    OHNUKI, Y. (1968). Structure of chromosomes I. Morphological studies of the spiral structure of human somatic chromosomes. Chromosoma (Berl.) 25, 402–428.CrossRefGoogle Scholar
  9. 9.
    UTSUMI, K.R. and TANAKA, T. (1975). Studies on the structure of chromosomes I. The uncoiling of chromosomes revealed by treatment with hypotonic solution. Cell Struct. Funct. 1, 93–99.CrossRefGoogle Scholar
  10. 10.
    BAK, A.L., ZEUTHEN, J., and CRICK, F.H.C. (1977). Higher-order structure of human mitotic chromosomes. Proc. Natl. Acad. Sci. USA 74, 1595–1599.PubMedCrossRefGoogle Scholar
  11. 11.
    BAK, A.L. and ZEUTHEN, J. (1978). Higher-order structure of mitotic chromosomes. Cold Spring Harbor Symp. Quant. Biol. 42, 367–377.PubMedCrossRefGoogle Scholar
  12. 12.
    SEDAT, J. and MANUELIDIS, L. (1978). A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harbor Symp. Quant. Biol. 42, 331–350.PubMedCrossRefGoogle Scholar
  13. 13.
    BAK, P., BAK, A.L., and ZEUTHEN, J. (1979). Characterization of human chromosomal unit fibers. Chromosoma (Berl.) 73, 301–315.CrossRefGoogle Scholar
  14. 14.
    ZEUTHEN, J., BAK, P., and BAK, A.L. (1979). Chromosomal unit fibers in Drosophila. Chromosoma (Berl.) 73, 317–326.CrossRefGoogle Scholar
  15. 15.
    JORGENSEN, A.L. and BAK, A.L. (1982). The last order of coiling in human chromosomes. Exp. . Cell Res. 139, 447–451.PubMedCrossRefGoogle Scholar
  16. 16.
    EARNSHAW, W.C. and LAEMMLI, U.K. (1983). Architecture of metaphase chromosomes and chromosome scaffolds. J. Cell Biol. 96, 84–93.PubMedCrossRefGoogle Scholar
  17. 17.
    PIENTA, K.J. and COFFEY, D.S. (1985). The nuclear matrix: an organizing structure for the interphase nucleus and chromosome. J. Cell Sci. (in press).Google Scholar
  18. 18.
    GALL, J.G. (1955). Problems of structure and function in the amphibian oocyte nucleus. Symp. Soc. Exptl. Biol. 9, 358–370.Google Scholar
  19. 19.
    CALLAN, H.B. (1982). The Croonian lecture, 1981. Lamp-brush chromosomes. Proc. Roy. Soc. Lond. B 214, 417–448.CrossRefGoogle Scholar
  20. 20.
    PAULSON, J.R. and LAEMMLI, U.K. (1977). The structure of histone-depleted metaphase chromosomes. Cell 12, 817–828.PubMedCrossRefGoogle Scholar
  21. 21.
    ADOLPH, K.W., CHENG, S.M., and LAEMMLI, U.K. (1977). Role of nonhistone proteins in metaphase chromosome structure. Cell 12, 805–816.PubMedCrossRefGoogle Scholar
  22. 22.
    ADOLPH, K.W., CHENG, S.M., PAULSON, J.R. and LAEMMLI, U.K. (1977). Isolation of a protein scaffold from mitotic HeLa cell chromosomes. Proc. Natl. Acad. Sci. USA 74, 4937–4941.CrossRefGoogle Scholar
  23. 23.
    LAEMMLI, U.K., CHENG, S.M., ADOLPH, K.W., PAULSON, J.R., BROWN, J.A., and BAUMBACH, W.R. (1978). Metaphase chromosome structure: the role of nonhistone proteins. Cold Spring Harbor Symp. Quant. Biol. 42, 351–360.PubMedCrossRefGoogle Scholar
  24. 24.
    MARSDEN, M.P.F. and LAEMMLI, U.K. (1979). Metaphase chromosome structure: evidence for a radial loop model. Cell 17, 849–858.PubMedCrossRefGoogle Scholar
  25. 25.
    LEWIS, C.D. and LAEMMLI, U.K. (1982). Higher order meta-phase chromosome structure: evidence for metalloprotein interactions. Cell 29, 171–181.PubMedCrossRefGoogle Scholar
  26. 26.
    DuPraw, E.J. and RAE, P.M.M. (1966). Polytene chromosome structure in relation to the “folded fibre” concept. Nature 212, 598–600.PubMedCrossRefGoogle Scholar
  27. 27.
    BAHR, G.F. (1970). Human chromosome fibers. Consider- ations of DNA-protein packing and of looping patterns. Exp. Cell Res. 62, 39–49.PubMedCrossRefGoogle Scholar
  28. 28.
    COMINGS, D. E. and OKADA, T.A. (1973). Some aspects of chromosome structure in eukaryotes. Cold Spring Harbor Symp. Quant. Biol. 38, 145–153.CrossRefGoogle Scholar
  29. 29.
    TAYLOR, J.H. (1957). The time and mode of duplication of chromosomes. Amer. Naturalist 91, 209–221.CrossRefGoogle Scholar
  30. 30.
    MAIO, J.J. and SCHILDKRAUT, C.L. (1966). Isolated mammalian metaphase chromosomes. I. General characteristics of nucleic acids and proteins. J. Mol. Biol. 24, 29–39.CrossRefGoogle Scholar
  31. 31.
    STUBBLEFIELD, E. and WRAY, W. (1971). Architecture of the Chinese hamster metaphase chromosome. Chromosome (Berl.) 32, 262–294.Google Scholar
  32. 32.
    COMINGS, D.E. (1977). Mammalian chromosome structure. In: “Chromosomes Today,” Vol. 6 (A. de la Chapelle and 7f. Sorsa, eds.) pp. 19–26. Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  33. 33.
    OKADA, T.A. and COMINGS, D.E. (1979). Higher order structure of chromosomes. Chromosoma (Berl.) 72, 1–14.CrossRefGoogle Scholar
  34. 34.
    MULLINGER, A.M. and JOHNSON, R.T. (1979). The organization of supercoiled DNA from human chromosomes. J. Cell Sci. 38, 369–389.PubMedGoogle Scholar
  35. 35.
    MULLINGER, A.M. and JOHNSON, R.T. (1980). Packing DNA into chromosomes. J. Cell Sci. 46, 61–86.PubMedGoogle Scholar
  36. 36.
    ANGELIER, N., PAINTRAND, M., LAVAUD, A. (1984). Scanning electron microscopy brush chromosomes. Chromosoma (Berl.)Google Scholar
  37. 37.
    OKADA, T.A. and COMINGS, D.E. (1980). cores in chromosomes: is the scaffold Hum. Genet. 32, 814–832.Google Scholar
  38. 38.
    VOGELSTEIN, B., PRADOLL, D.M. and COFFEY, D.S. (1980). Supercoiled loops and eucaryotic DNA replication. Cell 22, 79–85.PubMedCrossRefGoogle Scholar
  39. 39.
    HANCOCK, R. and HUGHES, M.E. (1982). Organization of DNA in the eucaryotic nucleus. Biol. Cell. 44, 201–212.Google Scholar
  40. 40.
    PINON, R. and SALTS, Y. (1977). Isolation of folded chromosomes from the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 74, 2850–2854.PubMedCrossRefGoogle Scholar
  41. 41.
    COOK, P.R. and BRAZELL, I.A. (1978). Spectrofluorometric measurement of the binding of ethidium to superhelical DNA from cell nuclei. Eur. J. Biochem. 84, 465–477.PubMedCrossRefGoogle Scholar
  42. 41a.
    HARTWIG, M. (1978). Organization of mammalian chromosomal DNA: supercoiled and folded circular DNA subunits from interphase cell nuclei. Acta Biol. Med. Germ. 37, 421–432.PubMedGoogle Scholar
  43. 42.
    HARTWIG, M. (1982). The size of independently supercoiled domains in normal human lymphocytes and leukemic lymphoblasts. Biochim. Biophys. Acta 698, 214–217.PubMedGoogle Scholar
  44. 43.
    BENYAJATI, C. and WORCEL, A. (1976). Isolation, char- acterization, and structure of the folded interphase genome of Drosophila melanogaster. Cell 9, 393–407.PubMedCrossRefGoogle Scholar
  45. 44.
    WANKA, F., MULLENDERS, L.H.F., BEKERS, A.G.M., PENNINGS, L.J., AELEN, and EYGENSTEYN, J. (1977). Association of nuclear DNA with a rapidly sedimenting structure. Biochem. Biophys. Res. Comm. 74, 739–747.PubMedCrossRefGoogle Scholar
  46. 45.
    IGO-KEMENES, T. and ZACHAU, H.G. (1978). Domains in chromatin structure. Cold Spring Harbor Symp. Quant. Biol. 42, 109–118.PubMedCrossRefGoogle Scholar
  47. 46.
    RAZIN, S.V., MANTIEVA, V.L., and GEORGIEV, G.P. (1979). The similarity of DNA sequences remaining bound to scaffold upon nuclease treatment of interphase nuclei and metaphase chromosomes. Nucleic Acids Res. 7, 1713–1735.PubMedCrossRefGoogle Scholar
  48. 47.
    BEREZNEY, R. and BUCHHOLTZ, L.A. (1981). Dynamic association of replicating fragments with the nuclear matrix of regenerating liver. Exp. Cell Res. 132, 1–13.PubMedCrossRefGoogle Scholar
  49. 48.
    HYDE, J.E. (1982). Expansion of chicken erythrocyte nuclei upon limited micrococcal nuclease digestion. Exp. Cell Res. 140, 63–70.PubMedCrossRefGoogle Scholar
  50. 49.
    LAWSON, G.M., KNOLL, B.J M.-J., and O’MALLEY, B.W. MARCH, C.J., WOO, S.L., TSAI, (1982). Definition of 5’ and 3’ the chromatin domain containing structural boundaries of the ovalbumin multigene family. J. Biol. Chem. 257, 1501–1507.PubMedGoogle Scholar
  51. 50.
    CHEN, G.L., ROWE, T.C., HALLIGAN, B.D., TEWEY, K.M., and LIU, L.F. (1984). Non-intercalcative antitumor drugs interfere with the breakage-reunion reaction of mammalian topoisomerase II. J. Biol. Chem. 259, 13560–13566.PubMedGoogle Scholar
  52. 51.
    MIRKOVITCH, J., MIRAULT, M.-E., and LAEMMLI, U.K. (1984). Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39, 223–232PubMedCrossRefGoogle Scholar
  53. 52.
    WRAY, W. and STUBBLEFIELD, E. (1970). A new method for the rapid isolation of chromosomes, mitotic apparatus, or nuclei from mammalian fibroblasts at near neutral pH. Exp. Cell Res. 59, 469–478.PubMedCrossRefGoogle Scholar
  54. 53.
    PAULSON, J.R. (1982). Isolation of chromosome clusters from metaphase-arrested HeLa cells. Chromosoma (Berl.) 85, 571–581.CrossRefGoogle Scholar
  55. 54.
    THOMA, F., KOLLER, T.H., and KLUG, A. (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell. Biol. 83, 403–427.PubMedCrossRefGoogle Scholar
  56. 55.
    ADOLPH, K.W. (1980). Isolation and structural organization of human mitotic chromosomes. Chromosoma (Berl.) 76, 23–33.CrossRefGoogle Scholar
  57. 56.
    DETKE, S. and KELLER, J.M. (1982). Comparison of the proteins present in HeLa cell interphase nucleoskeletons and metaphase chromosome scaffolds. J. Biol. Chem. 257, 3905–3911.PubMedGoogle Scholar
  58. 57.
    GOODERHAM, K. and JEPPESEN, P. (1983). Chinese hamster metaphase chromosomes isolated under physiological conditions. Exp. Cell Res. 144, 1–14.PubMedCrossRefGoogle Scholar
  59. 58.
    BLUMENTHAL, A.B., DIEDEN, J.D., KAPP, L.N., and SEDAT, J.W. (1979). Rapid isolation of metaphase chromosomes containing high molecular weight DNA. J. Cell Biol. 81, 255–259.PubMedCrossRefGoogle Scholar
  60. 59.
    RIS, H. and WITT, P.L. (1981). Structure of the mammalian kinetochore. Chromosoma (Berl.) 82, 153–170.CrossRefGoogle Scholar
  61. 60.
    COLE, A. (1967). Chromosome structure. Theoret. Biophys. 1, 305–375.Google Scholar
  62. 61.
    EARNSHAW, W.C., HALLIGAN, B.H., COOKE, C.A., HECK, M.M., and LIU, L.F. (1985). Topoisomerase II is a major component of mitotic chromosome scaffolds. J. Cell Biol. 100, 1706–1715.PubMedCrossRefGoogle Scholar
  63. 62.
    RATTNER, J.B., BRANCH, A., and HANKALO, B.A. (1975). Electron microscopy of whole mount metaphase chromosomes. Chromosoma (Berl.) 52, 329–338.CrossRefGoogle Scholar
  64. 63.
    VAN NESS, J. and LAEMMLI, U.K. Submitted.Google Scholar
  65. 64.
    HADLACZKY, G., SUMNER, A.T., and ROSS, A. (1981). Protein-depleted chromosomes. II. Experiments concerning the reality of chromosome scaffolds. Chromosoma (Berl.) 81, 557–567.CrossRefGoogle Scholar
  66. 65.
    EARNSHAW, W.C. and LAEMMLI, U.K. (1984). Silver staining the chromosome scaffold. Chromosoma (Berl.) 89, 186–192.CrossRefGoogle Scholar
  67. 66.
    KAUFMAN, S.H., COFFEY, D.S. and SHAPER, J.H. (1981). Considerations in the isolation of rat liver nuclear matrix, nuclear envelope, and pore complex lamina. Exp. Cell Res. 132, 105–123.CrossRefGoogle Scholar
  68. 66a.
    JEPPESEN, P. and MORTEN, H. (1985). Effects of sulphydryl reagents on the structure of dehistonezed metaphase chromosomes. J. Cell Sci. 73, 245–260.PubMedGoogle Scholar
  69. 67.
    GOYANES, V.J., MATSUI, S.-I., and SNADBERG, A.A. (1980). The basis of chromatin fiber assembly within chromosomes studied by histone-DNA crosslinking followed by trypsin digestion. Chromosoma (Berl.) 78, 123–135.CrossRefGoogle Scholar
  70. 68.
    LABHART, P. and KOLLER, T. (1982). Involvement of higher order chromatin structures in metaphase chromosome organization. Cell 30, 115–121.PubMedCrossRefGoogle Scholar
  71. 69.
    WUNDERLI, H., WESTPHAL, M., ARMBRUSTER, B., and LABHART, P. (1983). Comparative studies on the structural organization of membrane-depleted nuclei and metaphase chromosomes. Chromosoma (Berl.) 88, 241–248.CrossRefGoogle Scholar
  72. 70.
    PATHAK, S. and HSU, T.C. (1979). Silver-stained structures in mammalian meiotic prophase. Chromosoma (Berl.) 70, 195–203.CrossRefGoogle Scholar
  73. 71.
    DRESSER, M.E. and MOSES, M.J. (1979). Silver staining of synaptonemal complexes in surface spreads for light and electron microscopy. Exp. Cell Res. 121, 416–419.PubMedCrossRefGoogle Scholar
  74. 72.
    FLETCHER, J.M. (1979). Light meiotic prophase chromosomes Chromosoma (Berl.) 72, 241–248.CrossRefGoogle Scholar
  75. 73.
    HOWELL, W.M. and HSU, T.C. (1979) ture revealed by silver staining. 61–66Google Scholar
  76. 74.
    SATYA-PRAKASH, K.L., HSU, T.C., and PATHAK, S. (1980). Behavior of the chromosome core in mitosis and meiosis. Chromosoma (Berl.) 81, 1–8.CrossRefGoogle Scholar
  77. 75.
    BURKHOLDER, G.D. and KAISERMAN, M.Z. (1982). Electron microscopy of silver-stained core-like structures in metaphase chromosomes. Can. J. Genet. Cytol. 24, 193–199.PubMedGoogle Scholar
  78. 76.
    ZHENG, H.-Z. and BURKHOLDER, G.D. (1982). Differential silver staining of chromatin in metaphase chromosomes. EER. Cell Res. 141, 117–125.CrossRefGoogle Scholar
  79. 77.
    BURKHOLDER, G.D. (1982). Dansyl chloride-stained nucleolar organizers and core-like structures in chinese hamster metaphase chromosomes. Exp. Cell Res. 142, 485–488.PubMedCrossRefGoogle Scholar
  80. 78.
    LIU, L.F. (1983). DNA topoisomerases-enzymes that catalyse the breaking and rejoining of DNA. CRC Crit. Rev. Biochem. 15, 1–24.PubMedCrossRefGoogle Scholar
  81. 79.
    EARNSHAW, W.C. and HECK, M.M.S. (1985). Localization of topoisomerase II in mitotic chromosomes. J. Cell Biol. 100 1716–1725.PubMedCrossRefGoogle Scholar
  82. 80.
    BUONGIORNO-NARDELLI, M., MICHELI, G., CARRI, M.T., and MARILLEY, M. (1982). A relationship between replicon size and supercoiled loop domains in the eukaryotic genome. Nature 298, 100–102.PubMedCrossRefGoogle Scholar
  83. 81.
    PARDOLL, D.M., VOGELSTEIN, B., and COFFEY, D.S. (1980). A fixed site of DNA replication in eukaryotic cells. Cell 19, 527–536.PubMedCrossRefGoogle Scholar
  84. 82.
    LAWSON, G.M., TSAI, M-J., O’MALLEY, B.W. (1980). Deoxyribonuclease I sensitivity of the nontranscribed sequences flanking the 5’ and 3’ ends of the ovomucoid gene and the ovalbumin gene and its related X and Y genes in hen oviduct nuclei. Biochemistry 19, 4403–4422.PubMedCrossRefGoogle Scholar
  85. 83.
    HARLAND, R.M., WEINTRAUB, H., and McKNIGHT, S.L. (1983). Transcription of DNA injected into Xenopus oocytes in influenced by template topology. Nature 302, 38–43.PubMedCrossRefGoogle Scholar
  86. 84.
    WEINTRAUB, H. (1983). A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin. Cell 32, 1191–1203.PubMedCrossRefGoogle Scholar
  87. 85.
    RYOJI, M. and WORCEL, A. (1984). Chromatin assembly in Xenopus oocytes: in vivo studies. Cell 37, 21–32.PubMedCrossRefGoogle Scholar
  88. 86.
    POHL, F.M. and JOVIN, T.M. (1972). Salt-induced co- operative conformational change of synthetic DNA: equilibrium and kinetic studies with poly(dG-dC). I. Mol. Biol. 67, 375–396.CrossRefGoogle Scholar
  89. 87.
    NORDHEIM, A., PARDUE, M.L., LAFER, E.M., MOLLER, A., STOLLAR, B.D., and RICH, A. (1981). Antibodies to left-handed Z-DNA bind to interband regions of Drosophila polytene chromosomes. Nature 294, 417–422.PubMedCrossRefGoogle Scholar
  90. 88.
    NORDHEIM, A., LAFER, E.M., PECK, L.J., B.D., and RICH, A. (1982). Negatively contain left-handed Z-DNA segments as antibody binding. Cell 31, 309–318.PubMedCrossRefGoogle Scholar
  91. 89.
    SUNDIN, O. and VARSHAVSKY, A. (1980) SV40 DNA replication proceed via catenated dimers. Cell 21, 103–114.PubMedCrossRefGoogle Scholar
  92. 90.
    SUNDIN, O. and VARSHAVSKY, A. (1981). Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication. Cell 25, 659–669.PubMedCrossRefGoogle Scholar
  93. 91.
    DiNARDO, S., VOELKEL, K., and STERNGLANZ, R. (1984). DNA topoisomerase II mutant of Saccharomyces cervisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl. Acad. Sci. USA 81, 2616–2620.PubMedCrossRefGoogle Scholar
  94. 92.
    UEMURA, T. and YANAGIDA, M. (1984). Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show current phenotypes in cell growth and chromatin organization. EMBO J. 3, 1737–1744.PubMedGoogle Scholar
  95. 93.
    STECK, T. and DRLICA, K. (1984). Bacterial chromosome segregation: evidence for DNA gyrase involvement in decatenation. Cell 36, 1081–1088.PubMedCrossRefGoogle Scholar
  96. 94.
    PRYOR, A., FAULKNER, K., RHOADES, M.M., and PEACOCK, W.J. (1980). Asynchronous replication of heterochromatin in maize. Proc. Natl. Acad. Sci. USA 77, 6705–6709.PubMedCrossRefGoogle Scholar
  97. 95.
    ALBERTS, B., BRAY, D., LEWIS, J., RAFF, M., ROBERTS, K., and WATSON, J.D. (1983). “Molecular Biology of the Cell,” p. 6555. Garland, New York.Google Scholar
  98. 96.
    SINGH, B. and GUPTA, R.S. (1983). Mutagenic responses of thirteen anticancer drugs on mutation induction at multiple genetic loci and on sister chromatid exchanges in chinese hamster ovary cells. Cancer Res. 43, 577–584.PubMedGoogle Scholar
  99. 97.
    BRENNER, S., PEPPER, D., BERNS, M.W., TAN, E., and BRINKLEY, B.R. (1981). Kinetochore structure, duplication, and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J. Cell Biol. 91, 95–102.PubMedCrossRefGoogle Scholar
  100. 98.
    HANCOCK, R. (1982). Topological organization of interphase DNA: the nuclear matrix and other skeletal structures. Biol. Cell. 46, 105–122.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • William C. Earnshaw
    • 1
  1. 1.Department of Cell Biology and AnatomyJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations