Structural Studies on the Second Order of Chromatin Organization

  • L. Wyns
  • S. Muyldermans
  • I. Lasters
  • J. Baldwin
Part of the NATO ASI Series book series (NSSA, volume 101)


In the presence of histones of the H1 family, an increase in salt concentration to the region of 60–140 mM NaC1 leads to a folding of 10 nm filaments of nucleosomes (which exist at 1–10 mM NaCl) into “thick” fibers of ∿30 nm diameter (1). It is this folding -- the next order above that of the nucleosome -- that we refer to as “second order chromatin structure.” The second order structure is not uniform. At the level of the core particle (146 bp of DNA and the core histones), there is clearly a unique structure, although even at this level modifications of histones (and possibly DNA) may influence the higher order structure. Variability is found above the level of the core particles among chromatins from different sources. For example, species specific and cell-type specific differences in linker DNA length are observed: the nucleosomal repeat lengths reported vary from 154 base pairs in Aspergillus (2) up to 248 base pairs for sea urchin sperm (3). Most chromatins have repeat lengths between 180 and 210 base pairs. Also, differences are observed in H1 stoichiometry and the occurrence of different H1 subtypes and post-synthetical modifications (4).These sorts of variability can be expected to introduce variation into the second order organization of chromatin.


Sucrose Gradient Core Particle High Order Structure Chromatin Fiber Chicken Erythrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    THOMA, F., KOLLER, T., and KLUG, A. (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt dependent superstructures of chromatin. J. Cell Biol. 83, 403–427.PubMedCrossRefGoogle Scholar
  2. 2.
    HORGEN,P. and SILVER, J. (1978). Chromatin in eukaryotic microbes. Ann. Rev. Microbiol. 32, 249–284.Google Scholar
  3. 3.
    SAVIC, A., RICHMAN, P., WILLIAMSON, P., and POCCIA, D. (1981). Alteration in chromatin structure during early sea urchin embrogenesis. Proc. Natl. Acad. Sci. USA 78, 3706–3710.Google Scholar
  4. 4.
    HOHMAN, P. (1978). The H1 class of histone and diversity in chromosomal structure. Subcell. Biochem. 5, 87–127.Google Scholar
  5. 5.
    RIS, H. (1975). In: “Structure and Function of Chro- matin,” Ciba Found:-Symp. Vol. 28 (D.W. Fitzsimmans and G.E. Wolstenholme, eds.) pp. 7–28. Elsevier, New York.Google Scholar
  6. 6.
    DAVIES, H.G., MURRAY, A.B., and WALMSLEY, M.E. (1974). Electron-microscope observations on the organization of the nucleus in chicken erythrocytes and a superunit thread hypothesis for chromosome structure. J. Cell Sci. 16, 261299.Google Scholar
  7. 7.
    DAVIES, H.G. and HAYNES, M.E. (1976). Electron-microscope observations on cell nuclei in various tissues of a teleost fish: the nucleolus-associated monolayer of chromatin structural units. J. Cell Sci. 21, 315–327.PubMedGoogle Scholar
  8. 8.
    FINCH, J.T. and KLUG, A. (1976). Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. USA 73, 1897–1901.Google Scholar
  9. 9.
    HOZIER, J., RENZ, M., and NEHLS, P. (1977). The chromosome fiber: evidence for an ordered superstructure of nucleosomes. Chromosoma 62, 301–317.PubMedCrossRefGoogle Scholar
  10. 10.
    FRANKE, W.W., SCHEER, U., TRENDELENBURG, M., ZENTGRAF, H.W., and SPRING, H. (1978). Morphology of transcripitionally active chromatin. Cold Spring Harbor Symp. Quant. Biol. 42, 755–772.Google Scholar
  11. 11.
    KIRYANOV, G.J., SMIRNOVA, T.A., and POLYAKOV, V.Y. (1982). Nucleomeric organization. of chromatin. Eur. J. Biochem. 124, 331–338.Google Scholar
  12. 12.
    ZENTGRAF, H.W. and FRANKE, W.W. (1984). Differences of supranucleosomal organization in different kinds of chromatin: cell type-specific globular subunits containing different numbers of nucleosomes. J. Cell Biol. 99, 272–286.PubMedCrossRefGoogle Scholar
  13. 13.
    STRATLING, W.H., MULLER, U., and ZENTGRAF, H.W. (1978). The higher order repeat structure of chromatin is built up of globular particles containing eight nucleosomes. Exp. Cell Res. 117, 303–311.Google Scholar
  14. 14.
    BUTT, T.R., JUMP, D.1 and SMULSON, M. (1979). Nucleosome periodicity in HeLa cell chromatin as probed by micrococcal nuclease. Proc. Natl. Acad. Sci. USA 76, 1628–1632.Google Scholar
  15. 15.
    STRATLING, W. and KLINGHOLZ, R. (1981). Supranucleosomal structure of chromatin: digestion by calcium/magnesium dependent endonuclease proceeds via a discrete size class of particles with elevated stability. Biochemistry 20, 1386–1392.PubMedCrossRefGoogle Scholar
  16. 16.
    RUIZ-CARRILLO, A., PUIGDOMEMECH, P., EDER, G., and LURZ, R. (1980). Stability and reversibility of higher ordered structure of interphase chromatin: continuity of deoxyribonucleic acid is not required for maintenance of folded structure. Biochemistry 19, 2544–2554.CrossRefGoogle Scholar
  17. 17.
    RUIZ-CARRILLO, A. and PUIGDOMENECH, P. (1982). Effect of histone composition on the stability of chromatin structure. Biochem. Biochys. Acta696, 267–274.Google Scholar
  18. 18.
    MUYLDERMANS, S., LASTERS, I., and WINS, L. (1982). Observation and characterization of discrete supranucleosomal structures or minisolenoids. Arch. Int. Physiol. Biochim. 90, (4), B228.Google Scholar
  19. 19.
    RENZ, M. (1979). Heterogeneity of the chromosome fiber. Nucleic Acids Res. 6, 2761–2767.PubMedCrossRefGoogle Scholar
  20. 20.
    MUYLDERMANS, S., LASTERS, I., WYNS, L., and HAMERS, R. (1980). Upon the observation of superbeads in chromatin. Nucleic Acids Res. 8, 2165–2172.PubMedCrossRefGoogle Scholar
  21. 21.
    WALKER, B., LOTHSTEIN, L., BAKER, C., LE STOURGEON, W. (1980). The release of 40S hnRNP particles by brief digestion of HeLa nuclei with micrococcal nuclease. Nucleic Acids Res. 8, 3639–3657.Google Scholar
  22. 22.
    BUTLER, P. (1983). The folding of chromatin. CRC Crit. Rev. Biochem. 15, 57–91.Google Scholar
  23. 23.
    BATES, D. and THOMAS, J. (1981). Histones H1 and H5: one or two molecules per nuclesomes? Nucleic Acids Res. 9, 5883–5894.PubMedCrossRefGoogle Scholar
  24. 24.
    JORCANO, J., MEYER, G., DAY, L., and RENZ, M. (1980). Aggregation of small oligonucleosomal chains into 300 A globular particles. Proc. Natl. Acad. Sci. USA 77, 64436447.Google Scholar
  25. 24.
    JORCANO, J., MEYER, G., DAY, L., and RENZ, M. (1980). Aggregation of small oligonucleosomal chains into 300 A globular particles. Proc. Natl. Acad. Sci. USA 77, 64436447.Google Scholar
  26. 26.
    CARON, F. and THOMAS, J. (1981). Exchange of histone H1 between segments of chromatin. J Mol. Biol. 146, 518–537.Google Scholar
  27. 27.
    WILKINS, M. (1956). 21, 75–90.Google Scholar
  28. 28.
    LUZZATI, V. and NICOLAEV, A. (1959). Etude par diffusion des rayons X aux petits angles des gels d’ acide desoxyribonucleique et de nucleoproteines. J. Mol. Biol. 1, 127–133.Google Scholar
  29. 29.
    LUZZATI, V. and NICOLAEV, A. (1963). The structure of nucleohistones and nucleoprotamines. J. Mol. Biol. 7, 142–163.Google Scholar
  30. 30.
    ZUBAY, G. and WILKINS, M. (1962). An X-ray diffraction study of histones and protamine in isolation and in combination with DNA.J. Mol. Biol. 4, 444–450.Google Scholar
  31. 31.
    PARDON, J., WILKINS, M., and RICHARDS, B. (1967). Super-helical model for nucleohistone. Nature 215, 508–509.PubMedCrossRefGoogle Scholar
  32. 32.
    BALDWIN, J., BOSELEY, P., BRADBURY, E., and IBEL, K. (1975). The subunit structure of the eukaryotic chromosome. Nature 253, 245–249.PubMedCrossRefGoogle Scholar
  33. 33.
    CARPENTER, B., BALDWIN, J., BRADBURY, E., and IBEL, K. (1976). Organization of subunits in chromatin. Nucleic Acids Res. 3, 89–100.Google Scholar
  34. 34.
    BALDWIN, J., CARPENTER, B., CREPI, H., HANCOCK, R., STEPHENS, R., SIMPSON, J., BRADBURY, E., and IBEL, K. (1978). Neutron scatter from chromatin in relation to higher order structure. J. App. Cryst. 11, 484–486.Google Scholar
  35. 35.
    LANGMORE, J. and PAULSON, J. (1983). Low angle X-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes. J. Cell Biol. 96, 1120–1131.PubMedCrossRefGoogle Scholar
  36. 36.
    BRADBURY, E., BALDWIN, J., CARPENTER, B., HJELM, R., HANCOCK, R., and IBEL, K. (1975). Neutron scatter studies of chromatin. Brookhaven Symp. Biol. 27, IV, 97–117.Google Scholar
  37. 37.
    SUAU, P., BRADBURY, E., and BALDWIN, J. (1979). Higher order structures of chromatin in solution.Eur. J. Biochem. 97, 539–602.Google Scholar
  38. 38.
    SUAU, P., KNEALE, G., BRADDOCK, G., BALDWIN, J., and BRADBURY, E. (1977). A low resolution model for the chromatin core particle by neutron scattering. Nucleic Acids Res. 4, 3769–3786.PubMedCrossRefGoogle Scholar
  39. 39.
    BRADBURY, E. (1981). of the structure of chromatin Biopolymers 20, 327–343.Google Scholar
  40. 40.
    P., BALDWIN, J., BRADBURY, E., angle neutron scattering stud-solution. Cell 10, 139–151.Google Scholar
  41. 41.
    CRANE-ROBINSON, C., STAYNOV, D., and BALDWIN, J. (1984). Chromatin higher order structure and histone Hl. Comments on Molecular and Cellular Biophysics 2, 219–265.Google Scholar
  42. 42.
    LASTERS, I., MUYLDERMANS, S., WYNS, L., and HAMERS, R. (1980). The role of H1 and H5 in the structure of chicken erythrocyte chromatin. Arch. Int. Physiol. Biochim. 88, (3), B140.Google Scholar
  43. 43.
    LASTERS, J., MUYLDERMANS, S., WYNS, L., and HAMERS, R. (1981). Differences in rearrangements of H1 and H5 in chicken erythrocyte chromatin. Biochemistry 20, 1104–1110.PubMedCrossRefGoogle Scholar
  44. 44.
    WYNS, L., NIEUWENHUYSEN, P., MUYLDERMANS, S., and CLAUWAERT, J. (1982). Chromatin polynucleosomal fragments of well-defined size: their homogeneity, number of nucleosomes and solution structure. Arch. Int. Physiol. Biochim. 90, (2), BP10.Google Scholar
  45. 45.
    WYNS, L., MUYLDERMANS, S., POLAND, T., and BALDWIN, J. (1982). Neutron-scattering studies of chromatin minisolenoids. Arch. Int. Physiol. Biochim. 90, B226–227.Google Scholar
  46. 46.
    BRUST, R. and HARBERS, E. (1981). Structural investigation on isolated chromatin of higher order organization. Eur. J. Biochem. 117, 609–615.Google Scholar
  47. 47.
    LEE, K., MANDELKERN, M., and CROTHERS, D. (1981). Solution structural studies of chromatin fibers. Biochemistry 20, 1438–1445.PubMedCrossRefGoogle Scholar
  48. 48.
    THOMAS, J. and BUTLER, P. (1980). Size dependence of a stable higher order structure in chromatin. J. Mol. Biol. 144, 89–93.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • L. Wyns
    • 1
  • S. Muyldermans
    • 1
  • I. Lasters
    • 1
  • J. Baldwin
    • 2
  1. 1.Labo Algemene BiologieVrije Universiteit BrusselSint Genesius Rode, BrusselsBelgium
  2. 2.Department of PhysicsLiverpool PolytechnicLiverpoolUK

Personalised recommendations