Diversity of Sperm Basic Chromosomal Proteins in the Vertebrates: A Phylogenetic Point of View

  • Harold E. Kasinsky
  • Mairi Mann
  • Michael Lemke
  • Sue-Ying Huang
Part of the NATO ASI Series book series (NSSA, volume 101)


In this paper we try to explain the variability of sperm basic proteins in nature by taking the subphylum Vertebrata as a starting point. The data presently available indicate that the appearance of unique sperm basic proteins has not been a sporadic phenomenon during vertebrate evolution. Rather there is a general macroevolutionary trend; namely, extreme variability of sperm basic proteins in bony fish and frogs gives way to a relative constancy of sperm protein types within urodeles, snakes, lizards, turtles, birds, metatherian and eutherian mammals. Cartilaginous fish also have similar sperm basic proteins. Furthermore, within particular orders of frogs and bony fish, certain families of sperm basic proteins are characteristic for particular genera and even individual species can be distinguished by their typical set of sperm proteins. This burst of sperm protein variability in the bony fish and frogs during vertebrate phylogeny coincides with the absence of internal fertilization in these orders, the appearance of sperm motility in the testis rather than the excurrent duct, the existence of polyploidy and the general absence of heteromorphic sex chromosomes. This seems to relieve selection pressure to maintain some relative constancy of sperm protein type in these orders. We speculate that perhaps the set of basic chromosomal proteins required to produce a functional sperm in a particular species of frog or bony fish is due to the time of onset of sexual maturity in that species. Thus, from a phylogenetic point of view, although sperm basic protein evolution in the vertebrates has been much less conservative than that of the nucleosomal histones, it has not been entirely a random affair.


Mature Sperm Bony Fish Relative Constancy Cartilaginous Fish Electrophoretic Profile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BLOCH, D.P. (1976). Histones of sperm. In: “Handbook of Genetics,” Vol. 5 ( R.C. King, ed.) pp. 736–167. Plenum Press, New York.Google Scholar
  2. 2.
    BLOCH, D.P. (1969). A catalog of sperm histones. Genetics (suppl.) 61, 93–111.Google Scholar
  3. 3.
    SUBIRANA, J.A. (1983). Nuclear proteins in spermatozoa and their interactions with DNA. In: “The Sperm Cell,” ( J. Andre, ed.) pp. 197–213. Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
  4. 4.
    KASINSKY, H..E., HUANG, S.Y., KAWUK, S., MANN, M., SWEENEY, M.A.J., and YEE, B. (1978). On the diversity of sperm histones in the vertebrates. III. Electrophoretic variability of testis-specific histone patterns in Anura contrasts with relative constancy in Squamata. J. Exp. Zool. 203, 109–126.Google Scholar
  5. 5.
    KASINSKY, H.E., HUANG, S.Y., MANN, M., ROCA, J., and SUBIRANA, J.A. (1985). On the diversity of sperm histones in the vertebrates. IV. Cytochemical and amino acid analysis in Anura. J. Exp. Zool. 234, 33–46.Google Scholar
  6. 6.
    BOLS, N.C. and KASINSKY, H.E. (1973). An electrophoretic comparison of histones in anuran testes. Can. J. Zool. 51, 203–208.Google Scholar
  7. 7a.
    MANN, M., RISLEY, M.S., ECKHARDT, R.A., and KASINSKY, H.E. (1982). Characterization of spermatid/sperm basic chromosomal proteins in the genus Xenopus ( Anura, Pipidae). J. Exp. Zool. 222, 173–186.Google Scholar
  8. 7b.
    KASINSKY, H.E. (1985). Why are sperm histones more variable in frogs than in salamanders, snakes, and lizards? Biologia Molecular: Segones Jornades, Societat Catalana de Biologia, 34–40.Google Scholar
  9. 8.
    VILLEE, C.A., WALKER, Jr. C.A., and BARNES, R.D. (1973). “General Zoology,” fourth edition. W.B. Saunders, Philadelphia.Google Scholar
  10. 9.
    DODD, J.M. (1983). Reproduction in cartilaginous fishes(Chondrichthyes).In: “Fish Physiology,” Vol. IX, Part A (W.S. Hoar, D.J. RarTIcall, and E.M. Donaldson, eds. ) pp. 3195Google Scholar
  11. 10.
    BOLS, N.C., BOLISKA, S.A., RAINVILLE, J.B., and KASINSKY, H.E. (1980). Spermiogenesis in the longnose skate and the spiny dogfish. J. Exp. Zool. 212, 423–433.Google Scholar
  12. 11.
    BOLS, N.C. and KASINSKY, H.E. (1976). On the diversity of sperm histones in the vertebrates. II. A cytochemical study of basic protein transitions during spermiogenesis in the cartilaginous fish Hydrolagus colliei. J. Exp. Zool. 198, 109–114.Google Scholar
  13. 12.
    BOLS, N.C. and KASINSKY, H.E. (1974). Cytochemistry of sperm histones in three cartilaginous fish. Can. J. Zool. 52, 437–439.Google Scholar
  14. 13.
    GUSSE, M. and CHEVAILLIER, P. (1981). Microelectrophoretic analysis of basic protein changes during spermiogenesis in the dogfish Scylliorhinus caniculus(L). Exp. Cell Res. 136, 391–397.Google Scholar
  15. 14.
    GUSSE, M. and CHEVAILLIER, P. (1978). Etude ultrastructurale et chimique de la chromatine au cours de la spermiogenese de la roussette Scyliorhinus caniculus(L). Cytobiologie 16, 421–443.PubMedGoogle Scholar
  16. 15.
    CHEVAILLIER, P. (1983). Some aspects of chromatin organization in sperm nuclei. In: “The Sperm Cell,” ( J. Andre, ed.) pp. 179–196. Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
  17. 16.
    KOSSEL, A. (1928). “The Protamines and Histones.” Longmans Green, London.Google Scholar
  18. 17.
    STANLEY, H.P., KASINSKY, H.E., and BOLS, N.C. (1984). Meiotic chromatin diminution in a vertebrate, the holocephalon fish Hydrolagus colliei ( Chondrichthyes, Holocephali). Tissue and Cell 16, 203–215.Google Scholar
  19. 18.
    DIXON, G.H. (1974). The basic proteins of trout testis chromatin: Aspects of their synthesis, post-synthetic modifications, and binding to DNA. Karolynska Symp. on Res. Meth. in Reprod. Biol. 5, 130–154.Google Scholar
  20. 19.
    MOYLE, P.B. and CECH, Jr. J.J. (1982). “Fishes: An Introduction to Ichthyology.” Prentice Hall, New Jersey.Google Scholar
  21. 20.
    MUNOZ-GUERRA, S., AZORIN, F., CASAS, M.T., MARCET, X., MARISTANY, M.A., ROCA, J., and SUBIRANA, J.A. (1982). Structural organization of sperm chromatin from the fish Carassius auratus. Exp. Cell Res., 137, 47–53.Google Scholar
  22. 21.
    ALDER, D. and GOROVSKY, M.A. (1975). Electrophoretic analysis of liver and testis histones of the frog Rana pipiens. J. Cell Biol. 64, 389–397.PubMedCrossRefGoogle Scholar
  23. 22.
    BOLS, N.C. and KASINSKY, H.E. (1972). Basic protein composition of anuran sperm: a cytochemical study. Can. J. Zool. 50, 171–177.Google Scholar
  24. 23.
    TYMOWSKA, J. (1977). A comparative study of the karyotypes of eight Xenopus species and subspecies possessing a 36-chromosome complement. Cytogen. Cell Genet. 18, 165–181.Google Scholar
  25. 24.
    TYMOWSKA, J. and FISCHBERG, M. (1973). Chromosome complements of the genus Xenopus. Chromosoma 44, 335–342.PubMedCrossRefGoogle Scholar
  26. 25.
    FISCHBERG, M., COLOMBELLI, B., and PICARD, J.J. (1982). Diagnose preliminaire d’une espece naturelle de Xenopus du Zaire. Alytes 1, 53–55.Google Scholar
  27. 26.
    RISLEY, M.S., ECKHARDT, R.A., MANN, M., and KASINSKY, H.E. (1982). Determinants of nuclear shaping in the genus Xenopus. Chromosoma 84557–569.PubMedCrossRefGoogle Scholar
  28. 27.
    FAWCETT, D.W., ANDERSON, W.A., and PHILLIPS, D.M. (1971). Morphogenetic factors influencing the shape of the sperm head. Dev. Biol. 26 220–251.Google Scholar
  29. 28.
    COLOM, J. and SUBIRANA, J.A. (1979). Protamines and related proteins from spermatozoa of molluscs. Characterization and molecular weight determination by gel electrophoresis. Biochim. Biophys. Acta 581, 217–227.Google Scholar
  30. 29.
    BOLS, N.C., BYRD, E.W., Jr., and KASINSKY, H.E. (1976). On the diversity of the sperm histones in the vertebrates. I. Changes in basic proteins during spermiogenesis in the newt Notophthalmus viridescens. Differentiation 7, 31–38.Google Scholar
  31. 30.
    PICHERAL, B. (1970). Nature et evolution des proteines basiques au cours de la spermiogenese chez Pleurodeles waltl Michah, amphibien urodele. Histochemie 23, 189–206.PubMedCrossRefGoogle Scholar
  32. 31.
    PICHERAL, B. (1979) tional aspects of Spermatozoon,“ (D.W. 267–287. Urban and. Structural, comparative, spermatozoa in urodeles. Fawcett and J.M. Bedford, Schwarzenberg, Baltimore. and funcIn: ”The -as.) pp.Google Scholar
  33. 32.
    BEDFORD, J.M. and CALVIN, H.I. (1974). The occurrence and possible functional significance of -S-S- crosslinks in sperm heads with particular reference to eutherian mammals. J. Exp. Zool. 188, 137–156.Google Scholar
  34. 33.
    KHARCHENKO, E.P., NALIVAEVA, N.N., and SOKOLOVA, T.V. (1980). Heterogeneity of cationic proteins of the chromatin of various tissues. Biokhimiya 45, 1630–1638 (in Russian). English translation in 1981, Plenum Publishing Corp.Google Scholar
  35. 34a.
    NAKANO, M., TOBITA, T., and ANDO, T. (1976). Studies on a protamine (galline) from fowl sperm. 3. The total amino acid sequence of the intact galline molecule. Int. J. Pept. Prot. Res. 8, 565–578.Google Scholar
  36. 34b.
    CHIVA, M., KASINSKY, H.E., and SUBIRANA, J.A. (1985). Caracteritzacio de protamines d’aus. I. Proteins testiculars d’anec (Anas platyrhynchos). Biologia Molecular: Segones Jornades, Societat Catalana de Biologia, 64–65.Google Scholar
  37. 35.
    MEZQUITA, C. and TENG, C.S. (1977). Studies on sex organ development: changes in nuclear and chromatin composition and genomic activity during spermiogenesis in the maturing rooster testis. Biochem. J. 164, 99–111.Google Scholar
  38. 36.
    BELLVE, A.R. (1979). The molecular biology of mammalian spermatogenesis. In: Oxford Reviews of Reproductive Biology, Vol. 1 ( TA. Finn, ed.) pp. 159–261. Clarendon Press, Oxford.Google Scholar
  39. 37.
    SUBIRANA, J.A. (1975). On the biological role of basic proteins in spermatozoa and during spermiogenesis. In: “The Biology of the Male Gamete,” ( J.G. Duckett and P.A. Racey, eds.) pp. 239–244. Academic Press, New York.Google Scholar
  40. 38.
    BEDFORD, J.M. (1979). Evolution of the sperm maturation and sperm storage functions of the epididymis. In: “The Spermatozoon,” (D.W. Fawcett and J.M. Bedford, edsT) pp. 721. Urban and Schwarzenberg, Baltimore.Google Scholar
  41. 39.
    OHNO, S. (1969). The role of gene duplication in vertebrate evolution. In: “The Biological Basis of Medicine,” Vol. 4 ( E.E. Bittar, ed.) pp. 109–132. Academic Press, New York.Google Scholar
  42. 40.
    BECAK, M.L., BECAK, W., CHEN, T.R., and SCHOFFNER, R.M. (1975). “Chromosome Atlas: Fish, Amphibians, Reptiles and Birds,” Vol. 3, Springer Verlag, New York.Google Scholar
  43. 41a.
    SCHMID, M., OLERT, J., and KLETT, C. (1979). Chromosome banding in amphibia. III. Sex chromosomes in Triturus. Chromosoma 71, 29–55.Google Scholar
  44. 41b.
    SCHMID, M., HAAF, T., GEILE, and SIMS, S. (1983). Unusual heteromorphic sex chromosomes in a marsupial frog. Experientia 39, 1153–1155.Google Scholar
  45. 42.
    REINBLOTH, R. (1975). “Intersexuality in the AnimalKingdom.” Springer-Verlag, New York.Google Scholar
  46. 43.
    OHNO, S., WOLF, S., and ATKIN, N.B. (1968). Evolution from fish to mammals by gene duplication. Hereditas 59, 179–193.Google Scholar
  47. 44.
    MORESCALCHI, A. (1973). Amphibia. In: “Cytotaxonomy and Vertebrate Evolution,” ( A.B. Chiaréïli and E. Capanna, eds.) pp. 233–348. Academic Press, New York.Google Scholar
  48. 45.
    MORESCALCHI, A. (1977). Phylogenetic aspects of karyological evidence. In: “Major Patterns in Vertebrate Evolution,” ( M.K. Hecht, P.C. Goody, and B.M. Hecht, eds.) pp. 149–167. Plenum Press, New York.Google Scholar
  49. 46.
    BOGART, J.P. (1980). Evolutionary implications of polyploidy in amphibians and reptiles. In: “Polyploidy: Biological Relevance,” ( W.H. Lewis, ed.) pp. 341–378. Plenum Press, New York.Google Scholar
  50. 47.
    KRAWETZ, S.A. and DIXON, G.H. (1984). Isolation and in vitro translation of a mammalian protamine messenger RNA. Bioscience Rep. 4, 593–604.CrossRefGoogle Scholar
  51. 48.
    GOULD, S.J. (1977). “Ontogeny and Phylogeny.” Belknap Press, Harvard. Cambridge, Mass.Google Scholar
  52. 49.
    MORESCALCHI, A. (1979). New developments in vertebrate cytotaxonomy. I. Cytotaxonomy of the amphibians. Genetica 50, 179–193.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Harold E. Kasinsky
    • 1
    • 2
  • Mairi Mann
    • 1
  • Michael Lemke
    • 1
  • Sue-Ying Huang
    • 1
  1. 1.Department of ZoologyUniversity of British ColumbiaVancouverCanada
  2. 2.Unitat de Quimica Macromolecular CSICEscuela T.S. d’Enginyers IndustrialsBarcelonaSpain

Personalised recommendations