Advertisement

Biochemistry and Molecular Biology of DNA Replication in Yeast

  • Josef Arendes
Part of the NATO ASI Series book series (NSSA, volume 101)

Abstract

For the past two decades, the study of the mechanism of DNA replication has been focused mainly on the chromosomes of the simple prokaryotes and their viruses (1). The complexity of the eukaryotic genome and multiple levels of control during the replication of eukaryotic chromosomes have until recently prevented similar studies. In recent years, a lower eukaryote, the yeast Saccharomyces cerevisiae, has become a major focus of efforts in molecular biology. In this chapter, I will briefly review accomplishments in this area. Yeast is an ideal model system for studies on the structure and replication of the eukaryotic chromosome. Yeast cells are easy to grow and study biochemically. Genetic analysis of S. cerevisiae has reached a more advanced stage of sophistication than in other eukaryotic systems. The availability in yeast of defined mutants defective in progression through the cell division cycle is a particular advantage for studying detailed replication mechanism (for comprehensive treatments see references 2 and 3). Application of recombinant DNA methodology and yeast DNA transformation techniques have provided important new tools for analyzing DNA structure and function in yeast cells (for reviews see references 4 and 5).

Keywords

Saccharomyces Cerevisiae Cold Spring Harbor Replication System Autonomously Replicate Sequence Yeast Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    KORNBERG, A. (1980). “DNA Replication.” W.H. Freeman, San Francisco.Google Scholar
  2. 2.
    STRATHERN, J.N., JONES, E.W., and BROACH, J.R., eds. (1981). “The molecular biology of the yeast Saccharomyces. Life cycle and inheritance.” Cold Spring Harbor Monograph 11 A, Cold Spring Harbor, New York.Google Scholar
  3. 3.
    STRATHERN, J.N., JONES, E.W., and BROACH, J.R., eds. (1982). “The molecular biology of the yeast Saccharomyces. Metabolism and gene expression.” Cold Spring Harbor Monograph 11 B, Cold Spring Harbor, New—York.Google Scholar
  4. 4.
    PETES, T.D. (1980). Molecular genetics of yeast. Ann. Rev. Biochem. 49, 845–876.PubMedCrossRefGoogle Scholar
  5. 5.
    STRUHL, K. (1983). The new yeast genetics. Nature 305, 391–397.PubMedCrossRefGoogle Scholar
  6. 6.
    LAUER, G.O., ROBERTS, T.J., and KLOTZ, L.C. (1977). Determination of the nuclear DNA content of Saccharomyces cerevisiae and implications for the organization of DNA in yeast chromosomes. J. Mol.Biol. 114, 507–526.PubMedCrossRefGoogle Scholar
  7. 7.
    PETES, T.D. and FANGMAN, W.O. (1972). Sedimentation properties of yeast chromosomal DNA. Proc. Natl. Acad. Sci. USA 69, 1188–1191.PubMedCrossRefGoogle Scholar
  8. 8.
    PETES, T.D., NEWLON, C.S., BYERS, B. and FANGMAN, W.L. (1974). Yeast chromosomal DNA: si,ze, structure, and replication. Cold Spring Harbor Symp. Quant. 38, 9–16. Cold Spring Harms New York.Google Scholar
  9. 9.
    BLACKBURN, E.H. and SZOSTAK, J.W. (1980). The molecular structure of centromeres and telomeres. Ann. Rev. Biochem. 53, 163–194.CrossRefGoogle Scholar
  10. 10.
    CLARKE, L. and CARBON, J. (1980). Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509.PubMedCrossRefGoogle Scholar
  11. 11.
    CARBON, J. (1984). Yeast centromeres: structure and function. Cell 37, 351–353.PubMedCrossRefGoogle Scholar
  12. 12.
    SZOSTAK, J.W. and BLACKBURN, E.H. (1982). Cloning yeast telomeres on linear plasmid vectors. Cell 29, 245–255.PubMedCrossRefGoogle Scholar
  13. 13.
    SHAMPAY, J., SZOSTAK, J.W., and BLACKBURN, E.H. (1984). DNA sequences of telomeres maintained in yeast. Nature 310, 154–157.PubMedCrossRefGoogle Scholar
  14. 14.
    WAMSLEY, R.W., CHAN, C.S.M., TYE, B.-K., and PETES, T.D. (1984). Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310, 157–160.CrossRefGoogle Scholar
  15. 15.
    HSIAO, C.L. and CARBON, J. (1979). High-frequency transformation of yeast by plasmids containing the cloned yeast ARG 4 gene. Proc. Natl. Acad. Sci. USA 76, 3829–3833.PubMedCrossRefGoogle Scholar
  16. 16.
    STINCHCOMB, D.T., STRUHL, K., and DAVIS, R.W. (1979). Isolation and characterization of a yeast chromosomal replicator. Nature 282, 39–43.PubMedCrossRefGoogle Scholar
  17. 17.
    STRUHL, K., STINCHCOMB, D.T., SCHERER, S., and DAVIS, R.W. (1979). High frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. 76, 1035–1039.PubMedCrossRefGoogle Scholar
  18. 18.
    CHAN, C.S.M. and TYE, B.-K. (1980). Autonomously replicating sequences in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77, 6329–6333.PubMedCrossRefGoogle Scholar
  19. 19.
    BEACH, D., PIPER, M. and SHALL, S. (1980). Isolation of chromosomal origins of replication in yeast. Nature 284, 185–187.PubMedCrossRefGoogle Scholar
  20. 20.
    NEWLON, C.S. and BURKE, W. (1980). Replication of small chromosomes in yeast. In: “Mechanistic Studies of DNA Replication and Genetic Recombination,” ICN-UCLA Symposia on Molecular and Cellular Biology 19 ( B. Alberts and C.C. Fox, eds.) pp. 339–409. Academic Press, New York.Google Scholar
  21. 21.
    STINCHCOMB, D.T., THOMAS, M., KELLY, J., SELKER, E., and DAVIS, R.W. (1980). Eukaryotic DNA segments capable of autonomous replication in yeast. Proc. Natl. Acad. Sci. USA 77, 4559–4563.PubMedCrossRefGoogle Scholar
  22. 22.
    ZAKIAN, V.A. (1981). Origin of replication from Xenopus laevis mitochondrial DNA promotes high-frequency transformation of yeast. Proc. Natl. Acad. Sci. USA 78, 3128–3132.PubMedCrossRefGoogle Scholar
  23. 23.
    BROACH, J.R., LI, Y.-Y., J., FELDMAN, J., JAYARAM, M., ABRAHAM, J., NASMYTH, K.A., HICKS, J.B. (1983). Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harbor Symp. Quant. Biol. 47, 1165–1173. Cold Spring Harbor, New York.Google Scholar
  24. 24.
    STINCHCOMB, D.T., MANN, C., and DAVIS, R.W. (1982). Centromeric DNA from Saccharomyces cerevisiae. J. Mol. Biol. 158, 157–179.PubMedCrossRefGoogle Scholar
  25. 25.
    HATTMAN, S., KENNY, C., BERGER, L., and PRATT, K. (1978). Comparative study of DNA methylation in three unicellular eucaryotes. J. Bacteriol. 135, 1156–1157.PubMedGoogle Scholar
  26. 26.
    PROFFITT, J.H., DAVIE, J.R., SWINTON, D., and HATTMAN, S. (1984). 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol. Cell Biol. 4, 985–988.PubMedGoogle Scholar
  27. 27.
    URIELI-SHOVAL, S., GRUENBAUM, Y., SEDAT, J., and RAZIN, A. (1982). The absence of detectable methylated bases in Drosophila melanogaster. FEBS Lett. 146, 148–152.PubMedCrossRefGoogle Scholar
  28. 28.
    WINTERSBERGER, U., SMITH, P., and LETNANSKY, K. (1973). Yeast chromatin. Preparation from isolated nuclei, histone composition, and transcription capacity. Eur. J. Biochem. 33, 123–130.PubMedCrossRefGoogle Scholar
  29. 29.
    BRANDT, W.F. and VON HOLT, C. (1976). The occurrence of histone H3 and H4 in yeast. FEBS Lett. 65, 386–390.PubMedCrossRefGoogle Scholar
  30. 30.
    THOMAS, J.G. and FURBER, V. (1976). Yeast chromatin structure. FEBS Lett. 66, 274–280.PubMedCrossRefGoogle Scholar
  31. 31.
    SOMMER, A. (1978). Yeast chromatin: search for histone H1. Mol. Gen. Genet. 161, 323–331.CrossRefGoogle Scholar
  32. 32.
    WEBER, S. and ISENBERG, I. (1980). HMG proteins of Saccharomyces cerevisiae. Biochemistry 19, 22236–22240.CrossRefGoogle Scholar
  33. 33.
    LOHR, D., CORDEN, J., TATCHELL, K., KOVACIC, R.T., and VAN HOLDE, K.E. (1977). Comparative subunit structure of HeLa, yeast, and chicken erythrocyte chromatin. Proc. Natl. Acad. Sci. USA 74, 79–83.PubMedCrossRefGoogle Scholar
  34. 34.
    NELSON, D.A., BELTZ, W.R., and RILL, R.L. (1977). Chromatin subunits from baker’s yeast: isolation and partial characterization. Proc. Natl. Acad. Sci. USA 74, 1343–1347.PubMedCrossRefGoogle Scholar
  35. 35.
    FANGMAN, W.L. and ZAKIAN, V.A. (1981). Genome structure and replication. In: “The molecular biology of the yeast Saccharomyces. Lie cycle and inheritance,” (J.N. Strathern, E.W. Jones, and J.R. Broach, eds.) pp. 27–58. Cold Spring.Harbor Monograph 11 A. Cold Spring Harbor, New York.Google Scholar
  36. 36.
    PINON, R. and SALTS, Y. (1977). Isolation of folded chromosomes from the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 74, 2850–2854.PubMedCrossRefGoogle Scholar
  37. 37.
    PINON, R. (1979). Folded chromosomes in meiotic yeast cells: analysis of early meiotic events. J. Mol. Biol. 129, 433–437.PubMedCrossRefGoogle Scholar
  38. 38.
    PRINGLE, J.R. and HARTWELL, L.H. (1981). The Saccharomyces cerevisiae cell cycle. In: “The molecular biology of the yeast Saccharomyces. Lire cycle and inheritance,” (J.N. Strathern, E.W. Jones, and J.R. Broach, eds.) pp. 97–142. Cold Spring Harbor Monograph 11 A. Cold Spring Harbor, New York.Google Scholar
  39. 39.
    WILLIAMSON, D.H. (1965). The timing of deoxyribonucleic acid synthesis in the cell cycle on Saccharomyces cerevisiae. J. Cell Biol. 25, 511–528.CrossRefGoogle Scholar
  40. 40.
    RIVIN, C.J. and FANGMAN, W.L. (1980). Cell cycle phase expansion in nitrogen-limited cultures of Saccharomyces cerevisiae. J. Cell Biol. 85, 96–107.PubMedCrossRefGoogle Scholar
  41. 41.
    PETES, T.D. and NEWLON, C.S. (1974). Structure of DNA in DNA replication mutants of yeast. Nature 251, 637–639.PubMedCrossRefGoogle Scholar
  42. 42.
    NEWLON, C.S., PETES, T.D., HEREFORD, L.M., and FANGMAN, W.L. (1974). Replication of yeast chromosomal DNA. Nature 247, 32–35.PubMedCrossRefGoogle Scholar
  43. 43.
    PETES, T.D. and WILLIAMSON, D.H. (1975). Fiber autoradiography of replicating yeast DNA. Exp. Cell Res. 95, 103–110PubMedCrossRefGoogle Scholar
  44. 44.
    RIVIN, C.J. and FANGMAN, W.L. (1980). Replication fork rate and origin activation during S phase of Saccharomyces cerevisiae. J. Cell Biol. 85, 108–115.PubMedCrossRefGoogle Scholar
  45. 45.
    HARTWELL, L.H. (1974). Saccharomyces cerevisiae cell cycle. Bacteriol. Rev. 38, 164–198.Google Scholar
  46. 46.
    SIMCHEN, G. (1978). Cell cycle mutants. Ann. Rev. Genet. 12, 161–191.PubMedCrossRefGoogle Scholar
  47. 47.
    HEREFORD, L.M. and HARTWELL, J.H. (1974). Sequential gene function in the initiation of Saccharomyces cerevisiae DNA synthesis. J. Mol. Biol. 84, 445–461.PubMedCrossRefGoogle Scholar
  48. 48.
    HARTWELL, L.H. (1976). Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J. Mol. Biol. 104, 803–814.PubMedCrossRefGoogle Scholar
  49. 49.
    REED, S.I. (1980). The selection of Saccharomyces cerevisiae mutants defective in the start event of cell division. Genetics 95, 561–577.PubMedGoogle Scholar
  50. 50.
    BRETER, H.-J., FERGUSON, J., PETERSON, T.A., and REED, S.I. (1983). Isolation and transcriptional characterization of three genes which function at start, the controlling event of the Saccharomyces cerevisiae cell division cycle: CDC 36, CDC 37, CDC 39. Mol. Cell.Biol. 3, 881–891.PubMedGoogle Scholar
  51. 51.
    WILKINSON, L.E. and PRINGLE, J.R. (1974). Transient G1 arrest of S. cerevisiae cells of mating type a by a factor produced by cells of mating type a. Exp. Cell. Res. 89, 175–188.PubMedCrossRefGoogle Scholar
  52. 52.
    HARTWELL, L.H., CULOTTI, J., PRINGLE, J.R., and REID, B.J. (1974). Genetic control of the cell division cycle in yeast. Science 183, 46–51.PubMedCrossRefGoogle Scholar
  53. 53.
    GAME, J.C. (1976). Yeast cell-cycle mutant cdc21 is a temperature-sensitive thymidylate auxotroph. Mol. Gen. Genet. 146, 313–315.PubMedCrossRefGoogle Scholar
  54. 54.
    BISSON, L. and THORNER, J. (1977). Thymidine 5’-monophosphate-requiring mutants of Saccharomyces cerevisiae are deficient in thymidylate synthetase. J. Bacteriol. 132, 44–50.PubMedGoogle Scholar
  55. 55.
    JOHNSTON, L.H. and NASMYTH, K. (1978). Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature 274, 891–893.PubMedCrossRefGoogle Scholar
  56. 56.
    KUO, C.-L. and CAMPBELL, J.L. (1982). Purification of the cdc8 protein of Saccharomyces cerevisiae by complementation in an aphidicolin-sensitive in vitro DNA replication system. Proc. Natl. Acad. Sci. USA 79, 4243–4247.PubMedCrossRefGoogle Scholar
  57. 57.
    ARENDES, J., KIM, K.C., and SUGINO, A. (1983). Yeast 2-um pladmid DNA replication in vitro: purification of the CDC8 gene product by complementation assay. Proc. Natl. Acad. Sci. USA 80, 673–677.PubMedCrossRefGoogle Scholar
  58. 58.
    SUGINO, A., SAKAI, A., WILSON-COLEMAN, F., ARENDES, J., and KIM, K.C. (1983). In vitro reconstitution of yeast 2-um plasmid DNA replication. In: “Mechanism of DNA replication and recombination,” ( NTR. Cozzareli, ed.) pp. 527–552. Alan R. Liss, New York.Google Scholar
  59. 59.
    KUO, C.-L. and CAMPBELL, J.L. (1983). Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8–1 mutation. Mol. Cell.Biol. 3, 1730–1737.PubMedGoogle Scholar
  60. 60.
    BIRKENMEYER, L.G., HILL, J.C., and DUMAS, L.B. (1984). Saccharomyces cerevisiae CDC8 gene and its product. Mol. Cell.Biol. 4, 583–590.PubMedGoogle Scholar
  61. 61.
    SCLAFANI, R.A. and FANGMAN, W.L. (1984). Yeast gene CDC8 encodes thymidylate kinase and is complemented by herpes thymidine kinase gene TK. Proc. Natl. Acad. Sci. USA 81, 5821–5825.PubMedCrossRefGoogle Scholar
  62. 62.
    JONG, A.Y.S., KUO, C.-L., and CAMPBELL, J.L. (1984). The CDC8 gene of yeast encodes thymidylate kinase. J. Biol. Chem. 259, 11052–11059.PubMedGoogle Scholar
  63. 63.
    KUO, C.-L., HUANG, N.-H., and CAMPBELL, J.L. (1983). Isolation of yeast replication mutants in permeabilized cells. Proc. Natl. Acad. Sci. USA 80, 6455–6459.Google Scholar
  64. 64.
    CHALLBERG, M.D. and KELLY, T.J. (1982). Eukaryotic DNA replication: viral and plasmid model systems. Ann. Rev. Biochem. 51, 901–934.PubMedCrossRefGoogle Scholar
  65. 65.
    BROACH, J.R. (1981). The yeast plasmid 2 p circle. In: “The molecular biology of yeast Saccharomyces. Life cycle and inheritance,” (J.N. Strathern, E.W. Jones, and J.R. Broach, eds.) pp. 445–470. Cold Spring Harbor Monograph 11 A, Cold Spring Harbor, New YoTGoogle Scholar
  66. 66.
    BROACH, J.R. (1982). The yeast plasmid 2 p circle. Cell 28, 203–204.PubMedCrossRefGoogle Scholar
  67. 67.
    GUNGE, N. (1983). Yeast DNA plasmids. Ann. Rev. Microbiol. 37, 253–276.CrossRefGoogle Scholar
  68. 68.
    HARTLEY, J.L. and DONELSON, J.G. (1980). Nucleotide sequence of the yeast plasmid. Nature 286, 860–864.PubMedCrossRefGoogle Scholar
  69. 69.
    LIVINGSTON, D.M. and HAHNE, S. (1979). Isolation of a condensed intracellular form of the 2 um DNA plasmid of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 76, 3727–3731.PubMedCrossRefGoogle Scholar
  70. 70.
    NELSON, R.G. and FANGMAN, W.L. (1979). Nucleosome organization of the yeast 2 um DNA plasmid. A eucaryotic mini-chromosome. Proc. Natl. Acad. Sci. USA 76, 6515–6519.PubMedCrossRefGoogle Scholar
  71. 71.
    TAKETO, M., JAZWINSKI, S.M., and EDELMAN, G.M. (1980). Association of the 2 um DNA plasmid with yeast folded chromosomes. Proc. Natl. Acad. Sci. USA 77, 3144–3148.PubMedCrossRefGoogle Scholar
  72. 72.
    BROACH, J.R. and HICKS, J.B. (1980). Replication and recombination functions associated with the yeast plasmid 2 p circle. Cell 21, 501–508.PubMedCrossRefGoogle Scholar
  73. 73.
    PETES, T.D. and WILLIAMSON, D.H. (1975). Replicating circular DNA molecules in yeast. Cell 4, 249–253.PubMedCrossRefGoogle Scholar
  74. 74.
    LIVINGSTON, D.M. and KUPFER, D.M. (1977). Control of Saccharomyces cerevisiae 2 um DNA replication by cell division cycle genes that control nuclear DNA replication. J. Mol. Biol. 116, 249–260.PubMedCrossRefGoogle Scholar
  75. 75.
    ZAKIAN, V.A., BREWER, B.J., and FANGMAN, W.L. (1979). Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase. Cell 17, 923–934.PubMedCrossRefGoogle Scholar
  76. 76.
    JAZWINSKI, S.M. and EDELMAN, G.M. (1979). Replication in vitro of the 2 um DNA plasmid of yeast. Proc. Natl. Acad. Sci. USA 76, 1223–1227.PubMedCrossRefGoogle Scholar
  77. 77.
    KOJO, H., GREENBERG, B.D., and SUGINO, A. (1981). Yeast 2 um plasmid DNA replication in vitro: origin and direction. Proc. Natl. Acad. Sci. USA 78, 7261–7265.PubMedCrossRefGoogle Scholar
  78. 78.
    CELNIKER, S.E. and CAMPBELL, J.L. (1982). Yeast DNA replication in vitro: initiation and elongation events mimic in vivo processes. Cell 31, 201–213.PubMedCrossRefGoogle Scholar
  79. 79.
    HUBERMAN, J.A. (1981). New views of the biochemistry of eucaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase. Cell 23, 647–648.PubMedCrossRefGoogle Scholar
  80. 80.
    SUGINO, A., KOJO, H., GREENBERG, B., BROWN, P.O., and KIM, K.C. (1981). In vitro replication of yeast 2 um plasmid DNA. In: “ICN-UCLA Symposia on Molecular and Cellular Biology,” 21 ( D.S. Ray and C.F. Fox, eds.) pp. 529–553. Academic Press, New York.Google Scholar
  81. 81.
    JAZWINSKI, S.M. and EDELMAN, G.M. (1982). Protein complexes from active replicative fractions associate in vitro with the replication origins of yeast 2-um DNA plasmid. Proc. Natl. Acad. Sci. USA 79, 3428–3432.PubMedCrossRefGoogle Scholar
  82. 82.
    JAZWINSKI, S.M., NIEDZWIECKA, A., and EDELMAN, G.M. (1983). In vitro association of a replication complex with a yeast chromosomal replicator. J. Biol. Chem. 258, 2754–2757.PubMedGoogle Scholar
  83. 83.
    JAZWINSKI, S.M. and EDELMAN, G.M. (1984). Evidence for participation of a multiprotein complex in yeast DNA replication in vitro. J. Biol. Chem. 259, 6852–6857.PubMedGoogle Scholar
  84. 84.
    WINTERSBERGER, U. and WINTERSBERGER, E. (1970). Studies on deoxyribonucleic acid polymerases from yeast. I. Partial purification and properties of two DNA polymerases from mitochondria-free cell extracts. Eur. J. Biochem. 13, 11–19PubMedCrossRefGoogle Scholar
  85. 85.
    WINTERSBERGER, U. and WINTERSBERGER, E. (1970). Studies on deoxyribonucleic acid polymerases from yeast. II. Partial purification and characterization of mitochondrial DNA polymerase from wild-type and respiration-deficient yeast cells. Eur. J. Biochem. 13, 20–27.PubMedCrossRefGoogle Scholar
  86. 86.
    CHANG, L.M.S. (1977). DNA polymerases from baker’s yeast. J. Biol. Chem. 252, 1873–1880.PubMedGoogle Scholar
  87. 87.
    WINTERSBERGER, E. (1978). Yeast DNA polymerases: anti-genetic relationship, use of RNA primer and associated exonuclease activity. Eur. J. Biochem. 84, 167–172.PubMedCrossRefGoogle Scholar
  88. 88.
    WINTERSBERGER, U. (1974). Absence of a low molecular weight DNA polymerase from nuclei of yeast Saccharomyces cerevisiae. Eur. J. Biochem. 50, 197–202.PubMedCrossRefGoogle Scholar
  89. 89.
    SINGH, S. and DUMAS, L.B. (1984). A DNA primase that copurifies with the major DNA polymerase from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 259, 7936–7940.PubMedGoogle Scholar
  90. 90.
    BADARACCO, G., CAPUCCI, L., PLEVANI, P., and CHANG, L.M.S. (1983). Polypeptide structure of DNA polymerase I from Saccharomyces cerevisiae. J. Biol. Chem. 258, 10720–10726.PubMedGoogle Scholar
  91. 91.
    HUBSCHER, U., SPANOS, A., ALBERT, W., GRUMMT, F., and BANDS, G.R. (1981). Evidence that a high molecular weight replicative DNA polymerase is conserved during evolution. Proc. Natl. Acad. Sci. USA 78, 6771–6775.PubMedCrossRefGoogle Scholar
  92. 92.
    PLEVANI, P., BADARACCO, G., GINELLI, E., and SORA, S. (1980). Effect and mechanism of action of aphidicolin on yeast deoxyribonucleic acid polymerase. Antimicrob. Agents Chemother. 18, 50–57.Google Scholar
  93. 93.
    PLEVANI, P. and CHANG, L.M.S. (1977). Enzymatic initiation of DNA synthesis by yeast RNA polymerases. Proc. Natl. Acad. Sci. USA 74, 1937–1941.PubMedCrossRefGoogle Scholar
  94. 94.
    PLEVANI, P. and CHANG, L.M.S. (1978). Initiation of enzymatic DNA synthesis by yeast RNA polymerase I. Biochemistry 17, 2530–2536.PubMedCrossRefGoogle Scholar
  95. 95.
    PLEVANI, P., BADARACCO, G., AUGL, C., and CHANG, L.M.S. (1984). DNA polymerase I and DNA primase complex in yeast. J. Biol. Chem. 259, 7532–7539.PubMedGoogle Scholar
  96. 96.
    LaBONNE, S.G. and DUMAS, L.B. (1983). Isolation of a yeast single-strand deoxyribonucleic acid binding protein that specifically stimulates yeast DNA polymerase I. Biochemistry 22, 3214–3219.PubMedCrossRefGoogle Scholar
  97. 97.
    CHANG, L.M.S., LURIE, K., and PLEVANI, P. (1978). A stimulatory factor for DNA polymerase. Cold Spring Harbor Symp. Quant. Biol. 43, 587–595.CrossRefGoogle Scholar
  98. 98.
    KARWAN, R., BLUTSCH, H., and WINTERSBERGER, U. (1983). Physical association of a DNA polymerase stimulating activity with a ribonuclease H purified from yeast. Biochemistry 22, 5500–5507.CrossRefGoogle Scholar
  99. 99.
    WYERS, F., HUET, J., SENTENAC, A., and FROMAGEOT, P. (1976). Role of DNA RNA hybrids in eukaryotes. Characterization of yeast ribonucleases H1 and H2. Eur. J. Biochem. 69, 385–395.CrossRefGoogle Scholar
  100. 100.
    PLEVANI, P., BADARACCO, G., and CHANG, L.M.S. (1980). Purification and characterization of two forms of DNA dependent ATPase from yeast. J. Biol. Chem. 255, 4957–4963.PubMedGoogle Scholar
  101. 101.
    DURNFORD, J.M. and CHAMPOUX, J.J. (1978). The DNA untwisting enzyme from Saccharomyces cerevisiae. J. Biol. Chem. 253, 1086–1089.PubMedGoogle Scholar
  102. 102.
    BADARACCO, G., PLEVANI, P., RUYECHAN, W.T., and CHANG, L.M.S. (1983). Purification and characterization of yeast topoisomerase I. J. Biol. Chem. 258, 2022–2026.PubMedGoogle Scholar
  103. 103.
    GOTO, T. and WANG, J.C. (1982). Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decantenation, unknotting, and relaxation of double-stranded DNA rings. J. Biol. Chem. 257, 5866–5872.PubMedGoogle Scholar
  104. 104.
    GOTO, T., LAIPIS, P., and WANG, J.C. (1984). The purification of DNA topoisomerases I and II of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 259, 10422–10429.PubMedGoogle Scholar
  105. 105.
    GELLERT, M. (1981). DNA topoisomerases. Ann. Rev. Biochem. 50, 879–910.PubMedCrossRefGoogle Scholar
  106. 106.
    DiNARDO, S., VOELKEL, K., and STERNGLANZ, R. (1984). DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl. Acad. Sci. USA 81, 2616–2620.PubMedCrossRefGoogle Scholar
  107. 107.
    GOTO, T. and WANG, J.C. (1984). Yeast DNA topoisomerase II is encoded by a single-copy, essential gene. Cell 36, 1073–1080.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Josef Arendes
    • 1
  1. 1.Institut für Physiologische ChemieJohannes-Gutenberg-UniversitätMainzWest Germany

Personalised recommendations