Skip to main content

Biochemistry and Molecular Biology of DNA Replication in Yeast

  • Chapter
Chromosomal Proteins and Gene Expression

Part of the book series: NATO ASI Series ((NSSA,volume 101))

  • 52 Accesses

Abstract

For the past two decades, the study of the mechanism of DNA replication has been focused mainly on the chromosomes of the simple prokaryotes and their viruses (1). The complexity of the eukaryotic genome and multiple levels of control during the replication of eukaryotic chromosomes have until recently prevented similar studies. In recent years, a lower eukaryote, the yeast Saccharomyces cerevisiae, has become a major focus of efforts in molecular biology. In this chapter, I will briefly review accomplishments in this area. Yeast is an ideal model system for studies on the structure and replication of the eukaryotic chromosome. Yeast cells are easy to grow and study biochemically. Genetic analysis of S. cerevisiae has reached a more advanced stage of sophistication than in other eukaryotic systems. The availability in yeast of defined mutants defective in progression through the cell division cycle is a particular advantage for studying detailed replication mechanism (for comprehensive treatments see references 2 and 3). Application of recombinant DNA methodology and yeast DNA transformation techniques have provided important new tools for analyzing DNA structure and function in yeast cells (for reviews see references 4 and 5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. KORNBERG, A. (1980). “DNA Replication.” W.H. Freeman, San Francisco.

    Google Scholar 

  2. STRATHERN, J.N., JONES, E.W., and BROACH, J.R., eds. (1981). “The molecular biology of the yeast Saccharomyces. Life cycle and inheritance.” Cold Spring Harbor Monograph 11 A, Cold Spring Harbor, New York.

    Google Scholar 

  3. STRATHERN, J.N., JONES, E.W., and BROACH, J.R., eds. (1982). “The molecular biology of the yeast Saccharomyces. Metabolism and gene expression.” Cold Spring Harbor Monograph 11 B, Cold Spring Harbor, New—York.

    Google Scholar 

  4. PETES, T.D. (1980). Molecular genetics of yeast. Ann. Rev. Biochem. 49, 845–876.

    Article  PubMed  CAS  Google Scholar 

  5. STRUHL, K. (1983). The new yeast genetics. Nature 305, 391–397.

    Article  PubMed  CAS  Google Scholar 

  6. LAUER, G.O., ROBERTS, T.J., and KLOTZ, L.C. (1977). Determination of the nuclear DNA content of Saccharomyces cerevisiae and implications for the organization of DNA in yeast chromosomes. J. Mol.Biol. 114, 507–526.

    Article  PubMed  CAS  Google Scholar 

  7. PETES, T.D. and FANGMAN, W.O. (1972). Sedimentation properties of yeast chromosomal DNA. Proc. Natl. Acad. Sci. USA 69, 1188–1191.

    Article  PubMed  CAS  Google Scholar 

  8. PETES, T.D., NEWLON, C.S., BYERS, B. and FANGMAN, W.L. (1974). Yeast chromosomal DNA: si,ze, structure, and replication. Cold Spring Harbor Symp. Quant. 38, 9–16. Cold Spring Harms New York.

    Google Scholar 

  9. BLACKBURN, E.H. and SZOSTAK, J.W. (1980). The molecular structure of centromeres and telomeres. Ann. Rev. Biochem. 53, 163–194.

    Article  Google Scholar 

  10. CLARKE, L. and CARBON, J. (1980). Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509.

    Article  PubMed  CAS  Google Scholar 

  11. CARBON, J. (1984). Yeast centromeres: structure and function. Cell 37, 351–353.

    Article  PubMed  CAS  Google Scholar 

  12. SZOSTAK, J.W. and BLACKBURN, E.H. (1982). Cloning yeast telomeres on linear plasmid vectors. Cell 29, 245–255.

    Article  PubMed  CAS  Google Scholar 

  13. SHAMPAY, J., SZOSTAK, J.W., and BLACKBURN, E.H. (1984). DNA sequences of telomeres maintained in yeast. Nature 310, 154–157.

    Article  PubMed  CAS  Google Scholar 

  14. WAMSLEY, R.W., CHAN, C.S.M., TYE, B.-K., and PETES, T.D. (1984). Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310, 157–160.

    Article  Google Scholar 

  15. HSIAO, C.L. and CARBON, J. (1979). High-frequency transformation of yeast by plasmids containing the cloned yeast ARG 4 gene. Proc. Natl. Acad. Sci. USA 76, 3829–3833.

    Article  PubMed  CAS  Google Scholar 

  16. STINCHCOMB, D.T., STRUHL, K., and DAVIS, R.W. (1979). Isolation and characterization of a yeast chromosomal replicator. Nature 282, 39–43.

    Article  PubMed  CAS  Google Scholar 

  17. STRUHL, K., STINCHCOMB, D.T., SCHERER, S., and DAVIS, R.W. (1979). High frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. 76, 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  18. CHAN, C.S.M. and TYE, B.-K. (1980). Autonomously replicating sequences in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77, 6329–6333.

    Article  PubMed  CAS  Google Scholar 

  19. BEACH, D., PIPER, M. and SHALL, S. (1980). Isolation of chromosomal origins of replication in yeast. Nature 284, 185–187.

    Article  PubMed  CAS  Google Scholar 

  20. NEWLON, C.S. and BURKE, W. (1980). Replication of small chromosomes in yeast. In: “Mechanistic Studies of DNA Replication and Genetic Recombination,” ICN-UCLA Symposia on Molecular and Cellular Biology 19 ( B. Alberts and C.C. Fox, eds.) pp. 339–409. Academic Press, New York.

    Google Scholar 

  21. STINCHCOMB, D.T., THOMAS, M., KELLY, J., SELKER, E., and DAVIS, R.W. (1980). Eukaryotic DNA segments capable of autonomous replication in yeast. Proc. Natl. Acad. Sci. USA 77, 4559–4563.

    Article  PubMed  CAS  Google Scholar 

  22. ZAKIAN, V.A. (1981). Origin of replication from Xenopus laevis mitochondrial DNA promotes high-frequency transformation of yeast. Proc. Natl. Acad. Sci. USA 78, 3128–3132.

    Article  PubMed  CAS  Google Scholar 

  23. BROACH, J.R., LI, Y.-Y., J., FELDMAN, J., JAYARAM, M., ABRAHAM, J., NASMYTH, K.A., HICKS, J.B. (1983). Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harbor Symp. Quant. Biol. 47, 1165–1173. Cold Spring Harbor, New York.

    Google Scholar 

  24. STINCHCOMB, D.T., MANN, C., and DAVIS, R.W. (1982). Centromeric DNA from Saccharomyces cerevisiae. J. Mol. Biol. 158, 157–179.

    Article  PubMed  CAS  Google Scholar 

  25. HATTMAN, S., KENNY, C., BERGER, L., and PRATT, K. (1978). Comparative study of DNA methylation in three unicellular eucaryotes. J. Bacteriol. 135, 1156–1157.

    PubMed  CAS  Google Scholar 

  26. PROFFITT, J.H., DAVIE, J.R., SWINTON, D., and HATTMAN, S. (1984). 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol. Cell Biol. 4, 985–988.

    PubMed  CAS  Google Scholar 

  27. URIELI-SHOVAL, S., GRUENBAUM, Y., SEDAT, J., and RAZIN, A. (1982). The absence of detectable methylated bases in Drosophila melanogaster. FEBS Lett. 146, 148–152.

    Article  PubMed  CAS  Google Scholar 

  28. WINTERSBERGER, U., SMITH, P., and LETNANSKY, K. (1973). Yeast chromatin. Preparation from isolated nuclei, histone composition, and transcription capacity. Eur. J. Biochem. 33, 123–130.

    Article  PubMed  CAS  Google Scholar 

  29. BRANDT, W.F. and VON HOLT, C. (1976). The occurrence of histone H3 and H4 in yeast. FEBS Lett. 65, 386–390.

    Article  PubMed  CAS  Google Scholar 

  30. THOMAS, J.G. and FURBER, V. (1976). Yeast chromatin structure. FEBS Lett. 66, 274–280.

    Article  PubMed  CAS  Google Scholar 

  31. SOMMER, A. (1978). Yeast chromatin: search for histone H1. Mol. Gen. Genet. 161, 323–331.

    Article  Google Scholar 

  32. WEBER, S. and ISENBERG, I. (1980). HMG proteins of Saccharomyces cerevisiae. Biochemistry 19, 22236–22240.

    Article  Google Scholar 

  33. LOHR, D., CORDEN, J., TATCHELL, K., KOVACIC, R.T., and VAN HOLDE, K.E. (1977). Comparative subunit structure of HeLa, yeast, and chicken erythrocyte chromatin. Proc. Natl. Acad. Sci. USA 74, 79–83.

    Article  PubMed  CAS  Google Scholar 

  34. NELSON, D.A., BELTZ, W.R., and RILL, R.L. (1977). Chromatin subunits from baker’s yeast: isolation and partial characterization. Proc. Natl. Acad. Sci. USA 74, 1343–1347.

    Article  PubMed  CAS  Google Scholar 

  35. FANGMAN, W.L. and ZAKIAN, V.A. (1981). Genome structure and replication. In: “The molecular biology of the yeast Saccharomyces. Lie cycle and inheritance,” (J.N. Strathern, E.W. Jones, and J.R. Broach, eds.) pp. 27–58. Cold Spring.Harbor Monograph 11 A. Cold Spring Harbor, New York.

    Google Scholar 

  36. PINON, R. and SALTS, Y. (1977). Isolation of folded chromosomes from the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 74, 2850–2854.

    Article  PubMed  CAS  Google Scholar 

  37. PINON, R. (1979). Folded chromosomes in meiotic yeast cells: analysis of early meiotic events. J. Mol. Biol. 129, 433–437.

    Article  PubMed  CAS  Google Scholar 

  38. PRINGLE, J.R. and HARTWELL, L.H. (1981). The Saccharomyces cerevisiae cell cycle. In: “The molecular biology of the yeast Saccharomyces. Lire cycle and inheritance,” (J.N. Strathern, E.W. Jones, and J.R. Broach, eds.) pp. 97–142. Cold Spring Harbor Monograph 11 A. Cold Spring Harbor, New York.

    Google Scholar 

  39. WILLIAMSON, D.H. (1965). The timing of deoxyribonucleic acid synthesis in the cell cycle on Saccharomyces cerevisiae. J. Cell Biol. 25, 511–528.

    Article  Google Scholar 

  40. RIVIN, C.J. and FANGMAN, W.L. (1980). Cell cycle phase expansion in nitrogen-limited cultures of Saccharomyces cerevisiae. J. Cell Biol. 85, 96–107.

    Article  PubMed  CAS  Google Scholar 

  41. PETES, T.D. and NEWLON, C.S. (1974). Structure of DNA in DNA replication mutants of yeast. Nature 251, 637–639.

    Article  PubMed  CAS  Google Scholar 

  42. NEWLON, C.S., PETES, T.D., HEREFORD, L.M., and FANGMAN, W.L. (1974). Replication of yeast chromosomal DNA. Nature 247, 32–35.

    Article  PubMed  CAS  Google Scholar 

  43. PETES, T.D. and WILLIAMSON, D.H. (1975). Fiber autoradiography of replicating yeast DNA. Exp. Cell Res. 95, 103–110

    Article  PubMed  CAS  Google Scholar 

  44. RIVIN, C.J. and FANGMAN, W.L. (1980). Replication fork rate and origin activation during S phase of Saccharomyces cerevisiae. J. Cell Biol. 85, 108–115.

    Article  PubMed  CAS  Google Scholar 

  45. HARTWELL, L.H. (1974). Saccharomyces cerevisiae cell cycle. Bacteriol. Rev. 38, 164–198.

    Google Scholar 

  46. SIMCHEN, G. (1978). Cell cycle mutants. Ann. Rev. Genet. 12, 161–191.

    Article  PubMed  CAS  Google Scholar 

  47. HEREFORD, L.M. and HARTWELL, J.H. (1974). Sequential gene function in the initiation of Saccharomyces cerevisiae DNA synthesis. J. Mol. Biol. 84, 445–461.

    Article  PubMed  CAS  Google Scholar 

  48. HARTWELL, L.H. (1976). Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J. Mol. Biol. 104, 803–814.

    Article  PubMed  CAS  Google Scholar 

  49. REED, S.I. (1980). The selection of Saccharomyces cerevisiae mutants defective in the start event of cell division. Genetics 95, 561–577.

    PubMed  CAS  Google Scholar 

  50. BRETER, H.-J., FERGUSON, J., PETERSON, T.A., and REED, S.I. (1983). Isolation and transcriptional characterization of three genes which function at start, the controlling event of the Saccharomyces cerevisiae cell division cycle: CDC 36, CDC 37, CDC 39. Mol. Cell.Biol. 3, 881–891.

    PubMed  CAS  Google Scholar 

  51. WILKINSON, L.E. and PRINGLE, J.R. (1974). Transient G1 arrest of S. cerevisiae cells of mating type a by a factor produced by cells of mating type a. Exp. Cell. Res. 89, 175–188.

    Article  PubMed  CAS  Google Scholar 

  52. HARTWELL, L.H., CULOTTI, J., PRINGLE, J.R., and REID, B.J. (1974). Genetic control of the cell division cycle in yeast. Science 183, 46–51.

    Article  PubMed  CAS  Google Scholar 

  53. GAME, J.C. (1976). Yeast cell-cycle mutant cdc21 is a temperature-sensitive thymidylate auxotroph. Mol. Gen. Genet. 146, 313–315.

    Article  PubMed  CAS  Google Scholar 

  54. BISSON, L. and THORNER, J. (1977). Thymidine 5’-monophosphate-requiring mutants of Saccharomyces cerevisiae are deficient in thymidylate synthetase. J. Bacteriol. 132, 44–50.

    PubMed  CAS  Google Scholar 

  55. JOHNSTON, L.H. and NASMYTH, K. (1978). Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature 274, 891–893.

    Article  PubMed  CAS  Google Scholar 

  56. KUO, C.-L. and CAMPBELL, J.L. (1982). Purification of the cdc8 protein of Saccharomyces cerevisiae by complementation in an aphidicolin-sensitive in vitro DNA replication system. Proc. Natl. Acad. Sci. USA 79, 4243–4247.

    Article  PubMed  CAS  Google Scholar 

  57. ARENDES, J., KIM, K.C., and SUGINO, A. (1983). Yeast 2-um pladmid DNA replication in vitro: purification of the CDC8 gene product by complementation assay. Proc. Natl. Acad. Sci. USA 80, 673–677.

    Article  PubMed  CAS  Google Scholar 

  58. SUGINO, A., SAKAI, A., WILSON-COLEMAN, F., ARENDES, J., and KIM, K.C. (1983). In vitro reconstitution of yeast 2-um plasmid DNA replication. In: “Mechanism of DNA replication and recombination,” ( NTR. Cozzareli, ed.) pp. 527–552. Alan R. Liss, New York.

    Google Scholar 

  59. KUO, C.-L. and CAMPBELL, J.L. (1983). Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8–1 mutation. Mol. Cell.Biol. 3, 1730–1737.

    PubMed  CAS  Google Scholar 

  60. BIRKENMEYER, L.G., HILL, J.C., and DUMAS, L.B. (1984). Saccharomyces cerevisiae CDC8 gene and its product. Mol. Cell.Biol. 4, 583–590.

    PubMed  CAS  Google Scholar 

  61. SCLAFANI, R.A. and FANGMAN, W.L. (1984). Yeast gene CDC8 encodes thymidylate kinase and is complemented by herpes thymidine kinase gene TK. Proc. Natl. Acad. Sci. USA 81, 5821–5825.

    Article  PubMed  CAS  Google Scholar 

  62. JONG, A.Y.S., KUO, C.-L., and CAMPBELL, J.L. (1984). The CDC8 gene of yeast encodes thymidylate kinase. J. Biol. Chem. 259, 11052–11059.

    PubMed  CAS  Google Scholar 

  63. KUO, C.-L., HUANG, N.-H., and CAMPBELL, J.L. (1983). Isolation of yeast replication mutants in permeabilized cells. Proc. Natl. Acad. Sci. USA 80, 6455–6459.

    Google Scholar 

  64. CHALLBERG, M.D. and KELLY, T.J. (1982). Eukaryotic DNA replication: viral and plasmid model systems. Ann. Rev. Biochem. 51, 901–934.

    Article  PubMed  CAS  Google Scholar 

  65. BROACH, J.R. (1981). The yeast plasmid 2 p circle. In: “The molecular biology of yeast Saccharomyces. Life cycle and inheritance,” (J.N. Strathern, E.W. Jones, and J.R. Broach, eds.) pp. 445–470. Cold Spring Harbor Monograph 11 A, Cold Spring Harbor, New YoT

    Google Scholar 

  66. BROACH, J.R. (1982). The yeast plasmid 2 p circle. Cell 28, 203–204.

    Article  PubMed  CAS  Google Scholar 

  67. GUNGE, N. (1983). Yeast DNA plasmids. Ann. Rev. Microbiol. 37, 253–276.

    Article  CAS  Google Scholar 

  68. HARTLEY, J.L. and DONELSON, J.G. (1980). Nucleotide sequence of the yeast plasmid. Nature 286, 860–864.

    Article  PubMed  CAS  Google Scholar 

  69. LIVINGSTON, D.M. and HAHNE, S. (1979). Isolation of a condensed intracellular form of the 2 um DNA plasmid of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 76, 3727–3731.

    Article  PubMed  CAS  Google Scholar 

  70. NELSON, R.G. and FANGMAN, W.L. (1979). Nucleosome organization of the yeast 2 um DNA plasmid. A eucaryotic mini-chromosome. Proc. Natl. Acad. Sci. USA 76, 6515–6519.

    Article  PubMed  CAS  Google Scholar 

  71. TAKETO, M., JAZWINSKI, S.M., and EDELMAN, G.M. (1980). Association of the 2 um DNA plasmid with yeast folded chromosomes. Proc. Natl. Acad. Sci. USA 77, 3144–3148.

    Article  PubMed  CAS  Google Scholar 

  72. BROACH, J.R. and HICKS, J.B. (1980). Replication and recombination functions associated with the yeast plasmid 2 p circle. Cell 21, 501–508.

    Article  PubMed  CAS  Google Scholar 

  73. PETES, T.D. and WILLIAMSON, D.H. (1975). Replicating circular DNA molecules in yeast. Cell 4, 249–253.

    Article  PubMed  CAS  Google Scholar 

  74. LIVINGSTON, D.M. and KUPFER, D.M. (1977). Control of Saccharomyces cerevisiae 2 um DNA replication by cell division cycle genes that control nuclear DNA replication. J. Mol. Biol. 116, 249–260.

    Article  PubMed  CAS  Google Scholar 

  75. ZAKIAN, V.A., BREWER, B.J., and FANGMAN, W.L. (1979). Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase. Cell 17, 923–934.

    Article  PubMed  CAS  Google Scholar 

  76. JAZWINSKI, S.M. and EDELMAN, G.M. (1979). Replication in vitro of the 2 um DNA plasmid of yeast. Proc. Natl. Acad. Sci. USA 76, 1223–1227.

    Article  PubMed  CAS  Google Scholar 

  77. KOJO, H., GREENBERG, B.D., and SUGINO, A. (1981). Yeast 2 um plasmid DNA replication in vitro: origin and direction. Proc. Natl. Acad. Sci. USA 78, 7261–7265.

    Article  PubMed  CAS  Google Scholar 

  78. CELNIKER, S.E. and CAMPBELL, J.L. (1982). Yeast DNA replication in vitro: initiation and elongation events mimic in vivo processes. Cell 31, 201–213.

    Article  PubMed  CAS  Google Scholar 

  79. HUBERMAN, J.A. (1981). New views of the biochemistry of eucaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase. Cell 23, 647–648.

    Article  PubMed  CAS  Google Scholar 

  80. SUGINO, A., KOJO, H., GREENBERG, B., BROWN, P.O., and KIM, K.C. (1981). In vitro replication of yeast 2 um plasmid DNA. In: “ICN-UCLA Symposia on Molecular and Cellular Biology,” 21 ( D.S. Ray and C.F. Fox, eds.) pp. 529–553. Academic Press, New York.

    Google Scholar 

  81. JAZWINSKI, S.M. and EDELMAN, G.M. (1982). Protein complexes from active replicative fractions associate in vitro with the replication origins of yeast 2-um DNA plasmid. Proc. Natl. Acad. Sci. USA 79, 3428–3432.

    Article  PubMed  CAS  Google Scholar 

  82. JAZWINSKI, S.M., NIEDZWIECKA, A., and EDELMAN, G.M. (1983). In vitro association of a replication complex with a yeast chromosomal replicator. J. Biol. Chem. 258, 2754–2757.

    PubMed  CAS  Google Scholar 

  83. JAZWINSKI, S.M. and EDELMAN, G.M. (1984). Evidence for participation of a multiprotein complex in yeast DNA replication in vitro. J. Biol. Chem. 259, 6852–6857.

    PubMed  CAS  Google Scholar 

  84. WINTERSBERGER, U. and WINTERSBERGER, E. (1970). Studies on deoxyribonucleic acid polymerases from yeast. I. Partial purification and properties of two DNA polymerases from mitochondria-free cell extracts. Eur. J. Biochem. 13, 11–19

    Article  PubMed  CAS  Google Scholar 

  85. WINTERSBERGER, U. and WINTERSBERGER, E. (1970). Studies on deoxyribonucleic acid polymerases from yeast. II. Partial purification and characterization of mitochondrial DNA polymerase from wild-type and respiration-deficient yeast cells. Eur. J. Biochem. 13, 20–27.

    Article  PubMed  CAS  Google Scholar 

  86. CHANG, L.M.S. (1977). DNA polymerases from baker’s yeast. J. Biol. Chem. 252, 1873–1880.

    PubMed  CAS  Google Scholar 

  87. WINTERSBERGER, E. (1978). Yeast DNA polymerases: anti-genetic relationship, use of RNA primer and associated exonuclease activity. Eur. J. Biochem. 84, 167–172.

    Article  PubMed  CAS  Google Scholar 

  88. WINTERSBERGER, U. (1974). Absence of a low molecular weight DNA polymerase from nuclei of yeast Saccharomyces cerevisiae. Eur. J. Biochem. 50, 197–202.

    Article  PubMed  CAS  Google Scholar 

  89. SINGH, S. and DUMAS, L.B. (1984). A DNA primase that copurifies with the major DNA polymerase from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 259, 7936–7940.

    PubMed  CAS  Google Scholar 

  90. BADARACCO, G., CAPUCCI, L., PLEVANI, P., and CHANG, L.M.S. (1983). Polypeptide structure of DNA polymerase I from Saccharomyces cerevisiae. J. Biol. Chem. 258, 10720–10726.

    PubMed  CAS  Google Scholar 

  91. HUBSCHER, U., SPANOS, A., ALBERT, W., GRUMMT, F., and BANDS, G.R. (1981). Evidence that a high molecular weight replicative DNA polymerase is conserved during evolution. Proc. Natl. Acad. Sci. USA 78, 6771–6775.

    Article  PubMed  CAS  Google Scholar 

  92. PLEVANI, P., BADARACCO, G., GINELLI, E., and SORA, S. (1980). Effect and mechanism of action of aphidicolin on yeast deoxyribonucleic acid polymerase. Antimicrob. Agents Chemother. 18, 50–57.

    CAS  Google Scholar 

  93. PLEVANI, P. and CHANG, L.M.S. (1977). Enzymatic initiation of DNA synthesis by yeast RNA polymerases. Proc. Natl. Acad. Sci. USA 74, 1937–1941.

    Article  PubMed  CAS  Google Scholar 

  94. PLEVANI, P. and CHANG, L.M.S. (1978). Initiation of enzymatic DNA synthesis by yeast RNA polymerase I. Biochemistry 17, 2530–2536.

    Article  PubMed  CAS  Google Scholar 

  95. PLEVANI, P., BADARACCO, G., AUGL, C., and CHANG, L.M.S. (1984). DNA polymerase I and DNA primase complex in yeast. J. Biol. Chem. 259, 7532–7539.

    PubMed  CAS  Google Scholar 

  96. LaBONNE, S.G. and DUMAS, L.B. (1983). Isolation of a yeast single-strand deoxyribonucleic acid binding protein that specifically stimulates yeast DNA polymerase I. Biochemistry 22, 3214–3219.

    Article  PubMed  CAS  Google Scholar 

  97. CHANG, L.M.S., LURIE, K., and PLEVANI, P. (1978). A stimulatory factor for DNA polymerase. Cold Spring Harbor Symp. Quant. Biol. 43, 587–595.

    Article  Google Scholar 

  98. KARWAN, R., BLUTSCH, H., and WINTERSBERGER, U. (1983). Physical association of a DNA polymerase stimulating activity with a ribonuclease H purified from yeast. Biochemistry 22, 5500–5507.

    Article  CAS  Google Scholar 

  99. WYERS, F., HUET, J., SENTENAC, A., and FROMAGEOT, P. (1976). Role of DNA RNA hybrids in eukaryotes. Characterization of yeast ribonucleases H1 and H2. Eur. J. Biochem. 69, 385–395.

    Article  CAS  Google Scholar 

  100. PLEVANI, P., BADARACCO, G., and CHANG, L.M.S. (1980). Purification and characterization of two forms of DNA dependent ATPase from yeast. J. Biol. Chem. 255, 4957–4963.

    PubMed  CAS  Google Scholar 

  101. DURNFORD, J.M. and CHAMPOUX, J.J. (1978). The DNA untwisting enzyme from Saccharomyces cerevisiae. J. Biol. Chem. 253, 1086–1089.

    PubMed  CAS  Google Scholar 

  102. BADARACCO, G., PLEVANI, P., RUYECHAN, W.T., and CHANG, L.M.S. (1983). Purification and characterization of yeast topoisomerase I. J. Biol. Chem. 258, 2022–2026.

    PubMed  CAS  Google Scholar 

  103. GOTO, T. and WANG, J.C. (1982). Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decantenation, unknotting, and relaxation of double-stranded DNA rings. J. Biol. Chem. 257, 5866–5872.

    PubMed  CAS  Google Scholar 

  104. GOTO, T., LAIPIS, P., and WANG, J.C. (1984). The purification of DNA topoisomerases I and II of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 259, 10422–10429.

    PubMed  CAS  Google Scholar 

  105. GELLERT, M. (1981). DNA topoisomerases. Ann. Rev. Biochem. 50, 879–910.

    Article  PubMed  CAS  Google Scholar 

  106. DiNARDO, S., VOELKEL, K., and STERNGLANZ, R. (1984). DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl. Acad. Sci. USA 81, 2616–2620.

    Article  PubMed  CAS  Google Scholar 

  107. GOTO, T. and WANG, J.C. (1984). Yeast DNA topoisomerase II is encoded by a single-copy, essential gene. Cell 36, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Arendes, J. (1985). Biochemistry and Molecular Biology of DNA Replication in Yeast. In: Reeck, G.R., Goodwin, G.H., Puigdomènech, P. (eds) Chromosomal Proteins and Gene Expression. NATO ASI Series, vol 101. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7615-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7615-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7617-0

  • Online ISBN: 978-1-4684-7615-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics