Advertisement

Z-DNA and its Binding Proteins

  • Fernando Azorin
  • Alexander Rich
Part of the NATO ASI Series book series (NSSA, volume 101)

Abstract

Since the recent discovery of the left-handed Z conformation of DNA, many efforts have been directed toward uncovering its biological relevance. The Z-DNA conformation was first described in an atomic resolution X-ray diffraction crystal structure of the hexanucleotide d(CpGpCpGpCpG) (1).

Keywords

Antibody Binding Site Supercoiled Plasmid Helical Turn Anti Conformation Superhelical Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    WANG, A.H.-J., QUIGLEY, G.J., KOLPAK, F.J., CRAWFORD, J.L., VAN BOOM, J.H., VAN DER MAREL, G., and RICH, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–686.PubMedCrossRefGoogle Scholar
  2. 2.
    HASCHEMEYER, A.E.V. and RICH, A. (1969). J. Mol. Biol. 27, 369–384.CrossRefGoogle Scholar
  3. 3.
    POHL, F.M. and JOVIN, T.M. (1972). Saltinduced cooperative conformational change of a synthetic DNA: equilibrium and kinetics studies with poly(dG-dC). J. Mol. Biol. 67, 375–396.PubMedCrossRefGoogle Scholar
  4. 4.
    BERE, M. and FELSENFELD, G. (1981). Effects of methylation on a synthetic polynucleotide: the B-Z transition in poly(dG-m5dC)-poly(dG-m5dC). Proc. Natl. Acad. Sci. USA 78, 4801–4804.CrossRefGoogle Scholar
  5. 5.
    SINGLETON, C.K., KLYSIK, J., STIRDIVANT, S.M., and WELLS, R.D. (1982). Left-handed Z-DNA is induced by supercoiling in physiological conditions. Nature 299, 312–316.PubMedCrossRefGoogle Scholar
  6. 6.
    PECK, L.J., NORDHEIM, A., RICH, A., and WANG, J.C. (1982). Flipping of cleaved d(pC-G)n DNA sequences from right to left-handed helical structure by salt Co(III) or negative supercoiling. Proc. Natl. Acad. Sci. USA 79, 4560–4564.PubMedCrossRefGoogle Scholar
  7. 7.
    ARNOTT, S., CHANDRASEKARAN, R., BIRDSALL, D.L., LESLIE, A.G.W., and RATLIFF, R.L. (1980). Left-handed DNA helices. Nature 283, 743–745.PubMedCrossRefGoogle Scholar
  8. 8.
    NORDHEIM, A. and RICH, A. (1983). The sequence (dC-dA)(dG-dT) forms left-handed Z-DNA in negatively supercoiled plasmids. Proc. Natl. Acad. Sci. USA 80, 1821–1825.PubMedCrossRefGoogle Scholar
  9. 9.
    HANIFORD, D.B. and PULLEYBLANK, D.E. (1983). Facile transition of poly[(dTG)-(dCA)] into a left-handed helix in physiological conditions. Nature 302, 632–634.PubMedCrossRefGoogle Scholar
  10. 10.
    WANG, A.H.-H., HAKOSHIMA, T., VAN DER MAREL, G., VAN BOOM, J.H., and RICH, A. (1984). AT base pairs are less stable than GC base pairs in Z-DNA: the crystal structure of d(m5CGTAm5CG). Cell 37, 321–331.PubMedCrossRefGoogle Scholar
  11. 11.
    WANG, A.H.-J., GESSNER, R.V., VAN DER MAREL, G., VAN BOOM, J.H., and RICH, A. (1985). Submitted.Google Scholar
  12. 12.
    FUJII, S., WANG, A.H.-J., VAN DER MAREL, G., VAN BOOM, J.H., and RICH, A. (1982). Molecular structure of (m5dCdG): the role of methyl group on 5-methyl cytosine in stabilizing Z-DNA. Nucleic Acids Res. 10, 7879–7892.PubMedCrossRefGoogle Scholar
  13. 13.
    KLYSIK, J., STIRDIVANT, S.M., SINGLETON, C.K., ZACHARIAS, W., and WELLS, R.D. (1983). Effects of 5 cytosine methylation on the B-Z transition in DNA fragments and recombinant plasmids. J. Mol. Biol. 168, 51–71.PubMedCrossRefGoogle Scholar
  14. 14.
    McINTOSH, L.P., GREIGER, J., ECKSTEIN, F., ZARLING, D.A., VAN DE SANDE, J.M., and JOVIN, T.M. (1983). Left-handed helical conformation of poly[d(A-m C)-d(G-T)]. Nature 304, 83–86.PubMedCrossRefGoogle Scholar
  15. 15.
    GESSNER, R.V., QUIGLEY, G.J., WANG, A.H.-J., VAN DER MAREL, G., VAN BOOM, J.H., and RICH, A. (1985). Structural bonds for stabilization of Z-DNA by cobalt hexamine and magnesium cations. Biochemistry 24, 237–240.PubMedCrossRefGoogle Scholar
  16. 16.
    BIRD, A.P. (1980). DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8, 1499–1504.PubMedCrossRefGoogle Scholar
  17. 17.
    DOERFLER, W. (1983). DNA methylation and gene activity. Ann. Rev. Biochem. 52, 93–1 24.Google Scholar
  18. 18.
    RICH, A., NORDHEIM, A., WANG, A.H.-J. (1984). The chemistry and and biology of left-handed Z-DNA. Ann. Rev.Biochem. 53, 791–846.Google Scholar
  19. 19.
    MOLLER, A., NORDHEIM, A., KOZLOWSKI, S.A., PATEL, D., and RICH, A. (1984). Bromination stabilizes poly(dG-dC) in the Z-DNA form under low salt conditions. Biochemistry 23, 1462CrossRefGoogle Scholar
  20. 20.
    PECK, L.J. and WANG, A. (1983). Energetics of B-to-Z transition in DNA. Proc. Natl. Acad. Sci. USA 80, 6206–6210.PubMedCrossRefGoogle Scholar
  21. 21.
    LAFER, E.M., MOLLER, A., NORDHEIM, A., STOLLAR, B.D., and RICH, A. (1981). Antibodies specific for left-handed Z-DNA. Proc. Natl. Acad. USA 78, 3546–3550.CrossRefGoogle Scholar
  22. 22.
    MALFOY, B. and LENG, H. (1981). Antiserum to Z-DNA. FEBS Lett. 132, 45–48.PubMedCrossRefGoogle Scholar
  23. 23.
    ZARLING, D.A., McINTOSH, L.P., ARNDT-JOVIN, D.J., ROBERTNICOUD, M., and JOVIN, T.M. (1984). Interactions of antipoly[d(G-br5C)]with synthetic, viral, and cellular Z-DNAs. J. Biomol. Struct. Dynam. 1, 1081–1107.CrossRefGoogle Scholar
  24. 24.
    MOLLER, A., GABRIELS, J.E., LAFER, E.M., NORDHEIM, A., RICH, A., and STOLLAR, B.D. (1982). Monoclonal antibodies recognize different parts of Z-DNA. I. Biol. Chem. 257, 12081–12085.Google Scholar
  25. 25.
    THOMAE, R., BECK, S., and POHL, F.M. (1983). Isolation of Z-DNA containing plasmids. Proc. Natl. Acad. Sci. USA 80, 5550–5553.PubMedCrossRefGoogle Scholar
  26. 26.
    NORDHEIM, A., LAFER, E.M., PECK, L.J., WANG, J., STOLLAR, B.D., and RICH, A. (1982). Negatively supercoiled plasmids contain left-handed Z-DNA segments as detected by antibody binding. Cell 31, 309–318.PubMedCrossRefGoogle Scholar
  27. 27.
    AZORIN, R., NORDHEIM, A., and RICH, A. (1983). Formation of Z-DNA in negatively supercoiled plasmids is sensitive to small changes in salt concentration within the physiological range. EMBO J. 2, 649–658.PubMedGoogle Scholar
  28. 28.
    SINGLETON, C.K., KLYSIK, J., STIRDIVANT, S.M., and WELLS, R.D. (1982). Left-handed Z-DNA is induced by supercoiling in physiological conditions. Nature 299, 312–316.PubMedCrossRefGoogle Scholar
  29. 29.
    AZORIN, R., HAHN, R., and RICH, A. (1984). Restriction endonucleases can be used to study B-Z junctions in super-coiled DNA. Proc. Natl. Acad. Sci. USA 81, 5714–5718.PubMedCrossRefGoogle Scholar
  30. 30.
    NORDHEIM, A. and RICH, A. (1983). Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303, 674–679.PubMedCrossRefGoogle Scholar
  31. 31.
    NORDHEIM, A., TESSER, P., AZORIN, R., KWON, Y., MOLLER, A., and RICH, A. (1982). Isolation of Drosophila proteins that bind selectively to left-handed Z-DNA. Proc. Natl. Acad. Sci. USA 79, 7729–7733.PubMedCrossRefGoogle Scholar
  32. 32.
    AZORIN, F. and RICH, A. (1985). Isolation of Z-DNA binding proteins from SV40 minichromosomes: evidence for binding to the viral control region. Cell (in press).Google Scholar
  33. 33.
    LAFER, E.M., SOUSA, R., ROSEN, B., HSU, A., and RICH, A. (1985). Submitted.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Fernando Azorin
    • 1
  • Alexander Rich
    • 1
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations