Transcriptional and Post-Transcriptional Control of Histone Gene Expression

  • Daniel Schümperli
Part of the NATO ASI Series book series (NSSA, volume 101)


The structure and developmental regulation of histone genes have been the subject of recent reviews (1, 2). This chapter will, therefore, deal only with experimental studies designed to identify transcriptional and post-transcriptional regulation signals and factors interacting with them.


Histone Gene Conserve Sequence Motif Nucleic Acid Binding Protein Histone mRNA Histone Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    HENTSCHEL, C.C. and BIRNSTIEL, M.L. (1981). The organization and expression of histone gene families. Cell 25, 301–313.PubMedCrossRefGoogle Scholar
  2. 2.
    MAXSON, R., MOHUN, T., COHN, R., and KEDES, L. (1983). Expression and organization of histone genes. Ann. Rev. Genetics 17, 239–277.CrossRefGoogle Scholar
  3. 3.
    GROSSCHEDL, R. and BIRNSTIEL, M.L. (1980). Identification of regulatory sequences in the prelude sequences of an H2A histone gene by the study of specific deletion mutants in vivo. Proc. Natl. Acad. Sci. USA 77, 1432–1436.PubMedCrossRefGoogle Scholar
  4. 4.
    GROSSCHEDL, R. and BIRNSTIEL, M.L. (1980). Spacer DNA sequences upstream of the TATAAATA sequence are essential for promotion of H2A histone gene transcription. Proc. Natl. Acad. Sci. USA 77, 7102–7106.PubMedCrossRefGoogle Scholar
  5. 5.
    GROSSCHEDL, R., MACHLER, M., ROHRER, U., and BIRNSTIEL, M.L. (1983). A functional component of the sea urchin H2A gene modulator contains an extended sequence homology to a viral enhancer. Nucleic Acids Res. 11, 8123–8136.PubMedCrossRefGoogle Scholar
  6. 6.
    CLERC, R.G., BUCHER, P., STRUB, K., and BIRNSTIEL, M.L. (1983). Transcription of a cloned Xenopus laevis H4 histone gene in the homologous frog oocyte system depends on an evolutionary conserved sequence motif in the -50 region. Nucleic Acids Res. 11, 8641–8657.PubMedCrossRefGoogle Scholar
  7. 7.
    STUNNENBERG, H.G. and BIRNSTIEL. M.L. (1982). Bioassay for components regulating eukaryotic gene expression: a chromosomal factor involved in the generation of histone mRNA 3’ termini. Proc. Natl. Acad. Sci. USA, 79, 6201–6204.PubMedCrossRefGoogle Scholar
  8. 8.
    MOUS, J, STUNNENBERG, H., GEORGIEV, O., and BIRNSTIEL, M.L. (1985). Stimulation of sea urchin H2B histone gene transcription by a chromatin-associated protein fraction depends on gene sequences downstream of the transcription start-site (submitted).Google Scholar
  9. 9.
    BUSSLINGER, M., PORTMANN, R., and BIRNSTIEL, M.L. (1979). A regulatory sequence near the 3’ end of sea urchin histone genes. Nucleic Acids Res. 6, 2997–3008.PubMedCrossRefGoogle Scholar
  10. 10.
    HENTSCHEL, C., IRMINGER, J.C., BUCHER, P., and BIRNSTIEL, M.L. (1980). Sea urchin histone mRNA termini are located in gene regions downstream from putative regulatory sequences. Nature, 285, 147–151.PubMedCrossRefGoogle Scholar
  11. 11.
    BIRCHMEIER, C., GROSSCHEDL, R., and BIRNSTIEL, M. L. (1982). Generation of authentic 3’ termini of an H2A mRNA in vivo is dependent on a short inverted DNA repeat and spacer sequences. Cell 28, 739–745.PubMedCrossRefGoogle Scholar
  12. 12.
    BIRCHMEIER, C., FOLK, W., and BIRNSTIEL, M.L. (1983). The terminal stem-loop structure and 80 bp of spacer DNA are required for the formation of 3’ termini of sea urchin H2A mRNA. Cell 35, 433–440.PubMedCrossRefGoogle Scholar
  13. 13.
    BIRCHMEIER, C., SCHUMPERLI, D., SCONZO, G., and BIRNSTIEL, M.L. (1984). 3’ editing of mRNA’s: sequence requirements and involvement of a 60-nucleotide RNA in maturation of histone mRNA precursors. Proc. Natl. Acad. Sci. USA 81, 1057–1061.PubMedCrossRefGoogle Scholar
  14. 14.
    KRIEG, P.A. and MELTON, D.A. (1984). Formation of the 3’ end of histone mRNA by post-transcriptional processing. Nature 308, 203–206.PubMedCrossRefGoogle Scholar
  15. 15.
    PRICE, D.H. and PARKER, C.S. (1984). The 3’ end of Drosophila histone H3 mRNA is produced by a processing activity in vitro. Cell 38, 423–429.PubMedCrossRefGoogle Scholar
  16. 16.
    HENTSCHEL, C., PROBST, E., and BIRNSTIEL, M. L. (1980). Transcriptional fidelity of histone genes injected into Xenopus oocyte nuclei. Nature 288, 100–102.PubMedCrossRefGoogle Scholar
  17. 17.
    GALLI, G., HOFSTETTER, H., STUNNENBERG, H.G., and BIRNSTIEL, M.L. (1983). Biochemical complementation with RNA in the Xenopus oocyte: a small RNA is required for the generation of 3’ histone mRNA termini. Cell 34, 823–828.PubMedCrossRefGoogle Scholar
  18. 18.
    GEORIEV, O. and BIRNSTIEL, M.L. (1985). The conserved CAAGAAAGA spacer sequence is an essential element for the formation of 3’ termini of the sea urchin H3 histone mRNA by RNA processing. EMBO J. 4, 481–489.Google Scholar
  19. 19.
    STRUB, K., GALLI, G., BUSSLINGER, M., and BIRNSTIEL, M.L. (1984). The cDNA sequences of the sea urchin U7 small nuclear RNA suggest specific contacts between histone mRNA precursor and U7 RNA during RNA processing. EMBO J. 3, 2801–2807.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Daniel Schümperli
    • 1
  1. 1.Institut für Molekularbiologie IIUniversität ZürichZürichSwitzerland

Personalised recommendations