Nucleosome Structure

  • Gerald R. Reeck
Part of the NATO ASI Series book series (NSSA, volume 101)


With the curious exception of dinoflagellates (1), the fundamental architectural unit in eukaryotic chromosomes is the nucleosome (2). Because nearly all of the DNA in a nucleus occurs in nucleosomes, one cannot think intelligently about any structural aspect of chromatin or chromosomes or about any biological process that occurs on chromosomes without taking into account the structure of the nucleosome. Athough the physical entity itself has been existence for several hundred million years, the concept of the nucleosome arose only about 12 years ago. We are thus in the early stages of unraveling the nucleosome’s structural details and their physiological significance. Nonetheless, a great deal of information has already been obtained, especially in structural terms.


Core Particle Histone Core Histone Tail Nucleosome Core Nucleosome Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    HERZOG, M. and SOYER, M.O. (1983). The native structure of dinoflagellate chromosomes and their stabilization by Ca++ and Mg cations. Eur. J. Cell Biol. 30, 33–41.Google Scholar
  2. 2.
    McGHEE, J. and FELSENFELD, G. (1980). Nucleosome structure. Ann. Rev. Biochem. 49, 1115–1156.Google Scholar
  3. 3.
    KORNBERG, R.D. (1974). Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871.PubMedCrossRefGoogle Scholar
  4. 4.
    KORNBERG, R.D. (1977). Structure of chromatin. Ann. Rev. Biochem. 46, 931 954.Google Scholar
  5. 5.
    LOHR, D., CORDEN, J., TATCHELL, HOLDE, K.E. (1977). Comparative yeast, and chicken erythrocyte Acad. Sci. USA 74, 7983.Google Scholar
  6. 6.
    K., KOVACIC, R.T., and VAN subunit structure of HeLa, chromatin. Proc. Natl. ISENBERG, I. (1979). Histones. 159–191.Google Scholar
  7. 7.
    FINCH, J.T., BROWN, R.S., RHODES, D., RICHMOND, T., RUSTON, B., LUTTER, L.C., and KLUG, A. (1981). X-ray diffraction study of a new crystal form of the nucleosome core showing higher resolution. J. Mol. Biol. 145, 757–769.Google Scholar
  8. 8.
    RICHMOND, T.J., FINCH, J.T., RUSTON, B., RHODES, D., and KLUG, A. (1984). Structure of the nucleosome core at 7 A resolution. Nature 311, 532–537.PubMedCrossRefGoogle Scholar
  9. 9.
    KLUG, A., RHODES, D., SMITH, J., FINCH, J.T., and THOMAS, J.O. (1980). A low resolution structure for the histone core of the nucleosome. Nature 287, 509–516.PubMedCrossRefGoogle Scholar
  10. 10.
    SIMPSON, R.T. and WHITLOCK, J.P., Jr. (1976). Mapping DNAase I-susceptible sites in nucleosomes labeled at the 5’ ends. Cell 9, 347–353.PubMedCrossRefGoogle Scholar
  11. 11.
    LUTTER, L.C. I cleavages superhelix.Ann. Rev. Biochem. 48Google Scholar
  12. 12.
    MIRZABEKOV, Biochem. Sci (1978). Kinetic analysis of deoxyribonuclease in the nucleosome core: evidence for a DNA J. Mol. Biol. 124, 391–420.Google Scholar
  13. 13.
    BIDNEY, D.L. and REECK, G.R. (1978). Association products and conformations of salt-dissociated and acid-extracted histones. A two-phase procedure for isolating salt- dissociated histones. Biochemisty 16, 1844–1849.Google Scholar
  14. 14.
    HJELM, R.P., KNEALE, G.G., SUAU, P., BALDWIN, J.P., and BRADBURY, E.M. (1977). Small angle neutron scattering studies of chromatin subunits in solution. Cell 10, 139–151.PubMedCrossRefGoogle Scholar
  15. 15.
    BURLINGAME, R.W., LOVE, W.E., WANG, B.-C., HAMLIN, R., XUONG, N.-H., and MOUDRIANAKIS, E.V. (1985). Crystallographic structure of the octameric histone core of the nucleosome at a resolution of 3.3 A. Science 228, 546–553.PubMedCrossRefGoogle Scholar
  16. 16.
    BURLINGAME, R.W., LOVE, W.E., and MOUDRIANAKIS, E.V. (1984). Crystals of the octameric histone core of the nucleosome. Science 223, 413–414.PubMedCrossRefGoogle Scholar
  17. 17.
    LEWIS, R.O., COX, D.J., and REECK, G.R. (1980). Chromatographic change in histone H3–H4 preparations during short term storage and its reversal by bisulfite. Int. J. Pept. Prot. Res. 16, 219–224.Google Scholar
  18. 18.
    CAMERINI-OTERO, R.D. and FELSENFELD, G. (1977). Histone H3 disulfide dimers and nucleosome structure. Proc. Natl. Acad. Sci. USA 74, 5519–5523.Google Scholar
  19. 19.
    EICKBUSH, T.H. and MOUDRIANAKIS, E.N. (1978). The histone core complex: an octamer assembled by two sets of protein-proteins interactions. Biochemistry 17, 4955–4964.PubMedCrossRefGoogle Scholar
  20. 20.
    WALKER, I.O. (1984). Differential dissociation of histone tails from core chromatin. Biochemistry 23, 5622–5628.PubMedCrossRefGoogle Scholar
  21. 21.
    CHAO, M.V., GRALLA, J., and MARTINSON, H.G. (1979). DNA sequence directs placement of histone cores on restriction fragments during nucleosome formation. Biochemistry 18, 1068–1074.PubMedCrossRefGoogle Scholar
  22. 22.
    SIMPSON, R.T. and STAFFORD, D.W. (1983). Structural features of a phased nucleosome core particle. Proc. Natl. Acad. Sci. USA 80, 51–55.Google Scholar
  23. 23.
    TRIFONOV, E.N. (1983). Sequence dependent variations of B-DNA structure and protein-DNA recognition. Cold Spring Harbor Symp. Quant. Biol. 47, 271–278.Google Scholar
  24. 24.
    MENGERITSKY, G. and TRIFONOV, E.N. (1983). Nucleotide sequence-directed mapping of the nucleosomes. Nucleic Acids Res. 11, 3833–3851.PubMedCrossRefGoogle Scholar
  25. 25.
    DICKERSON, R.E. and DREW, H.R. B-DNA dodecamer. II. Influence structure. J. Mol. Biol. 149, 7Google Scholar
  26. 26.
    REECK, G.R. and HEDGCOTH, C. (1985). Amino acid sequence alignment of cereal storage proteins. FEBS Lett. 180, 291–294.CrossRefGoogle Scholar
  27. 27.
    GILBERT, W. (1985). Genes-in-pieces revisited. Science 228, 823–824.PubMedCrossRefGoogle Scholar
  28. 28.
    BOHM, L. and CRANE-ROBINSON, C. (1984). Proteases as structural probes for chromatin: the domain structure of histones. Bioscience Rep. 4, 365–386.CrossRefGoogle Scholar
  29. 29.
    REECK, G.R., SWANSON, E., and TELLER, D.C. (1978). The evolution of histones. J. Mol. Evol. 10, 309–317.Google Scholar
  30. 30.
    REECK, G.R. and TELLER, D.C. (1984) proteins: purification, properties quence comparisons. In: “Progress research,” Vol. II ( I. Bekhor, ed.) Boca Raton, Florida.Google Scholar
  31. 31.
    WHITLOCK, J.P., Jr. and STEIN, A. (1978). Folding of DNA by histones which lack their NH2-terminal regions. J. Biol. Chem. 253, 3857–3861.Google Scholar
  32. 32.
    ALLAN, J., HARBORNE, N., RAU, Participation of core histone ’ of the chromatin solenoid. J.D.C., and GOULD, H. (1982). ‘tails in the stabilization Cell Biol. J. Biol. Chem 93, 285–297.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Gerald R. Reeck
    • 1
  1. 1.Department of BiochemistryKansas State UniversityManhattanUSA

Personalised recommendations